Acidification‐induced changes in neurological function have been documented in several tropical marine fishes. Here, we investigate whether similar patterns of neurological impacts are observed in a temperate Pacific fish that naturally experiences regular and often large shifts in environmental pH/pCO2. In two laboratory experiments, we tested the effect of acidification, as well as pH/pCO2variability, on gene expression in the brain tissue of a common temperate kelp forest/estuarine fish,Embiotoca jacksoni. Experiment 1 employed static pH treatments (target pH = 7.85/7.30), while Experiment 2 incorporated two variable treatments that oscillated around corresponding static treatments with the same mean (target pH = 7.85/7.70) in an eight‐day cycle (amplitude ± 0.15). We found that patterns of global gene expression differed across pH level treatments. Additionally, we identified differential expression of specific genes and enrichment of specific gene sets (GSEA) in comparisons of static pH treatments and in comparisons of static and variable pH treatments of the same mean pH. Importantly, we found that pH/pCO2variability decreased the number of differentially expressed genes detected between high and low pH treatments, and that interindividual variability in gene expression was greater in variable treatments than static treatments. These results provide important confirmation of neurological impacts of acidification in a temperate fish species and, critically, that natural environmental variability may mediate the impacts of ocean acidification.
more »
« less
This content will become publicly available on November 7, 2025
Mixed quantum/classical theory for rotationally inelastic scattering of identical collision partners revised
When the tested system is artificially forced to follow the same collision path in indistinguishable and distinguishable treatments, all the differences between the results of the two treatments disappear.
more »
« less
- Award ID(s):
- 2102465
- PAR ID:
- 10586797
- Publisher / Repository:
- Royal Society of Chemistry, UK
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 26
- Issue:
- 43
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 27567 to 27582
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The human cost of the COVID-19 pandemic has taken a great toll, and led, around the globe, to a shortage in personal protective equipment (PPE) such as medical exam gloves. To face this shortage and keep themselves and patients safe, many front-line healthcare providers have been overextending the life of PPE. Though not ideal, one pragmatic solution often used is the practice of sanitization and extended use of existing PPE. The data produced by these experiments should help determine an acceptable reusability window of PPE in a working environment, by which the effective use time may be extended and justified. The effect of repeated sanitization, using soap and water, on the mechanical performance was investigated for latex and nitrile elastomeric medical exam gloves. Tensile tests were performed for various manufacturer brands commonly used in the United States (Glovepak Europa, Polymed and Sempersure) and India (Surgiglove). Tensile test samples were prepared for each studied glove and treatment combination. Nitrile gloves were observed to be more uniformly affected by the application of soap and water sanitization than latex gloves. Glovepak Europa nitrile gloves saw significant changes (p≤0.001) in elastic modulus after 5, 10 and 20 treatments losing 31.5%, 42.7% and 49.7%, respectively. Sempersure nitrile gloves also saw significant changes (p≤0.05) in elastic modulus at 5, 10 and 20 treatments losing 44.2%, 34.3% and 45.9%, respectively. Surgiglove nitrile gloves saw a significant loss in elastic modulus of 42.0% (p≤0.001) after 10 treatments. Surgiglove powder free latex showed no significant (p>0.05) change after 10 or 20 repeated treatments using soap and water. Polymed powder free latex showed no significant (p>0.05) change after 10 treatments, but did show a significant (p≤0.05) decrease in elastic modulus by 24.2% after 5 treatments and 25.5% after 20 treatments. Surgiglove powdered latex showed a significant (p≤0.05) increase in elastic modulus by 19.9% after 5 treatments and 15.8% after 10 treatments, while showing no significant (p>0.05) change at 20 treatments. Due to the consistent significant degradation after five repetitions, use of soap and water may not be an adequate sanitization procedure for nitrile gloves, since it would potentially induce premature failure. The latex gloves showed no clear pattern and the results were inconclusive.more » « less
-
Individuals may respond to treatments with significant heterogeneity. To optimize the treatment effect, it is necessary to recommend treatments based on individual characteristics. Existing methods in the literature for learning individualized treatment regimes are usually designed for randomized studies with binary treatments. In this study, we propose an algorithm to extend random forest of interaction trees (Su et al., 2009) to accommodate multiple treatments. By integrating the generalized propensity score into the interaction tree growing process, the proposed method can handle both randomized and observational study data with multiple treatments. The performance of the proposed method, relative to existing approaches in the literature, is evaluated through simulation studies. The proposed method is applied to an assessment of multiple voluntary educational programmes at a large public university.more » « less
-
Abstract Butterfly abundances are declining globally, with meta‐analysis showing a rate of −2% per year. Agriculture contributes to butterfly decline through habitat loss and degradation. Prairie strips—strips of farmland actively restored to native perennial vegetation—are a conservation practice with the potential to mitigate biodiversity loss, but their impact on butterfly biodiversity is not known.Working within a 30‐year‐old experiment that varied land use intensity, from natural areas to croplands (maize–soy–wheat rotation), we introduced prairie strips to less intensely managed crop treatments. Treatments included conservation land, biologically based (organic) row crops with prairie strips, reduced input row crops with prairie strips, no‐till row crops and conventional row crops. We measured butterfly abundance and richness: (1) within prairie strips and (2) across the gradient of land use intensity at the plot level.Butterfly abundance was higher within prairie strips than in all other treatments. Across the land use intensity gradient at the plot level, the conservation land treatment had the highest abundance, treatments with prairie strips had intermediate levels and no‐till and conventional treatments had the lowest abundances. Also across entire plots, butterfly richness increased as land use intensity decreased. Treatments with prairie strips, which also had reduced land use intensity, had distinct butterfly communities as they harboured several butterfly species that were not found in other row crop treatments.In addition to the known effects of prairie strips on ecosystem services including erosion control and increased water quality, prairie strips can increase biodiversity in multifunctional landscapes.more » « less
-
Abstract The individualized treatment rule (ITR), which recommends an optimal treatment based on individual characteristics, has drawn considerable interest from many areas such as precision medicine, personalized education, and personalized marketing. Existing ITR estimation methods mainly adopt 1 of 2 or more treatments. However, a combination of multiple treatments could be more powerful in various areas. In this paper, we propose a novel double encoder model (DEM) to estimate the ITR for combination treatments. The proposed double encoder model is a nonparametric model which not only flexibly incorporates complex treatment effects and interaction effects among treatments but also improves estimation efficiency via the parameter-sharing feature. In addition, we tailor the estimated ITR to budget constraints through a multi-choice knapsack formulation, which enhances our proposed method under restricted-resource scenarios. In theory, we provide the value reduction bound with or without budget constraints, and an improved convergence rate with respect to the number of treatments under the DEM. Our simulation studies show that the proposed method outperforms the existing ITR estimation in various settings. We also demonstrate the superior performance of the proposed method in patient-derived xenograft data that recommends optimal combination treatments to shrink the tumour size of the colorectal cancer.more » « less
An official website of the United States government
