Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes.
more »
« less
Impact of EMIC Waves on Electron Flux Dropouts Measured by GPS Spacecraft: Insights From ELFIN
Abstract Although the effects of electromagnetic ion cyclotron (EMIC) waves on the dynamics of the Earth's outer radiation belt have been a topic of intense research for more than 20 years, their influence on rapid dropouts of electron flux has not yet been fully assessed. Here, we make use of contemporaneous measurements on the same ‐shell of trapped electron fluxes at 20,000 km altitude by Global Positioning System (GPS) spacecraft and of trapped and precipitating electron fluxes at 450 km altitude by Electron Losses and Fields Investigation (ELFIN) CubeSats in 2020–2022, to investigate the impact of EMIC wave‐driven electron precipitation on the dynamics of the outer radiation belt below the last closed drift shell of trapped electrons. During six of the seven selected events, the strong 1–2 MeV electron precipitation measured at ELFIN, likely driven by EMIC waves, occurs within 1–2 hr from a dropout of relativistic electron flux at GPS spacecraft. Using quasi‐linear diffusion theory, EMIC wave‐driven pitch angle diffusion rates are inferred from ELFIN measurements, allowing us to quantitatively estimate the corresponding flux drop based on typical spatial and temporal extents of EMIC waves. We find that EMIC wave‐driven electron precipitation alone can account for the observed dropout magnitude at 1.5–3 MeV during all events and that, when dropouts extend down to 0.5 MeV, a fraction of electron loss may sometimes be due to EMIC waves. This suggests that EMIC wave‐driven electron precipitation could modulate dropout magnitude above 1 MeV in the heart of the outer radiation belt.
more »
« less
- Award ID(s):
- 2329897
- PAR ID:
- 10586815
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 10
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The strong variations of energetic electron fluxes in the Earth's inner magnetosphere are notoriously hard to forecast. Developing accurate empirical models of electron fluxes from low to high altitudes at all latitudes is therefore useful to improve our understanding of flux variations and to assess radiation hazards for spacecraft systems. In the present work, energy‐ and pitch‐angle‐resolved precipitating, trapped, and backscattered electron fluxes measured at low altitude by Electron Loss and Fields Investigation (ELFIN) CubeSats are used to infer omnidirectional fluxes at altitudes below and above the spacecraft, from 150 to 20,000 km, making use of adiabatic transport theory and quasi‐linear diffusion theory. The inferred fluxes are fitted as a function of selected parameters using a stepwise multivariate optimization procedure, providing an analytical model of omnidirectional electron flux along each geomagnetic field line, based on measurements from only one spacecraft in low Earth orbit. The modeled electron fluxes are provided as a function of ‐shell, altitude, energy, and two different indices of past substorm activity, computed over the preceding 4 hr or 3 days, potentially allowing to disentangle impulsive processes (such as rapid injections) from cumulative processes (such as inward radial diffusion and wave‐driven energization). The model is validated through comparisons with equatorial measurements from the Van Allen Probes, demonstrating the broad applicability of the present method. The model indicates that both impulsive and time‐integrated substorm activity partly control electron fluxes in the outer radiation belt and in the plasma sheet.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves lead to rapid scattering of relativistic electrons in Earth's radiation belts, due to their large amplitudes relative to other waves that interact with electrons of this energy range. A central feature of electron precipitation driven by EMIC waves is deeply elusive. That is, moderate precipitating fluxes at energies below the minimum resonance energy of EMIC waves occur concurrently with strong precipitating fluxes at resonance energies in low‐altitude spacecraft observations. This paper expands on a previously reported solution to this problem: nonresonant scattering due to wave packets. The quasi‐linear diffusion model is generalized to incorporate nonresonant scattering by a generic wave shape. The diffusion rate decays exponentially away from the resonance, where shorter packets lower decay rates and thus widen the energy range of significant scattering. Using realistic EMIC wave packets fromδfparticle‐in‐cell simulations, test particle simulations are performed to demonstrate that intense, short packets extend the energy of significant scattering well below the minimum resonance energy, consistent with our theoretical prediction. Finally, the calculated precipitating‐to‐trapped flux ratio of relativistic electrons is compared to ELFIN observations, and the wave power spectra is inferred based on the measured flux ratio. We demonstrate that even with a narrow wave spectrum, short EMIC wave packets can provide moderately intense precipitating fluxes well below the minimum resonance energy.more » « less
-
Abstract We report on observations of electromagnetic ion cyclotron (EMIC) waves and their interactions with injected ring current particles and high energy radiation belt electrons. The magnetic field experiment aboard the twin Van Allen Probes spacecraft measured EMIC waves nearL = 5.5–6. Particle data from the spacecraft show that the waves were associated with particle injections. The wave activity was also observed by a ground‐based magnetometer near the spacecraft geomagnetic footprint over a more extensive temporal range. Phase space density profiles, calculated from directional differential electron flux data from Van Allen Probes, show that there was a significant energy‐dependent relativistic electron dropout over a limitedL‐shell range during and after the EMIC wave activity. In addition, the NOAA spacecraft observed relativistic electron precipitation associated with the EMIC waves near the footprint of the Van Allen Probes spacecraft. The observations suggest EMIC wave‐induced relativistic electron loss in the radiation belt.more » « less
-
This paper presents observations of electromagnetic ion cyclotron (EMIC) waves from multiple data sources during the four Geospace Environment Modeling challenge events in 2013 selected by the Geospace Environment Modeling Quantitative Assessment of Radiation Belt Modeling focus group: 17 and 18 March (stormtime enhancement), 31 May to 2 June (stormtime dropout), 19 and 20 September (nonstorm enhancement), and 23–25 September (nonstorm dropout). Observations include EMIC wave data from the Van Allen Probes, Geostationary Operational Environmental Satellite, and Time History of Events and Macroscale Interactions during Substorms spacecraft in the near-equatorial magnetosphere and from several arrays of ground-based search coil magnetometers worldwide, as well as localized ring current proton precipitation data from low-altitude Polar Operational Environmental Satellite spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near-equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the Relativistic Electron-Proton Telescope and Magnetic Electron Ion Spectrometer instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~4.0. In three other cases, identifiable smaller and more short-lived dropouts appeared, and in five other cases, these waves evidently had little or no effect.more » « less
An official website of the United States government

