skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Efficient Neural Hybrid System Learning and Interpretable Transition System Abstraction for Dynamical Systems
Abstract This article proposes a neural network hybrid modeling framework for dynamics learning to promote an interpretable, computationally efficient method of dynamics learning and system identification. First, a low-level model is trained to learn the system dynamics, which utilizes multiple simple neural networks to approximate the local dynamics generated from data-driven partitions. Then, based on the low-level model, a high-level model is trained to abstract the low-level neural hybrid system model into a transition system that allows computational tree logic (CTL) verification to promote model’s ability to handle human interaction and verification efficiency.  more » « less
Award ID(s):
2143351 2223035 2331938
PAR ID:
10587073
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
ASME Letters in Dynamic Systems and Control
Volume:
5
Issue:
1
ISSN:
2689-6117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, a data-driven neural hybrid system modeling framework via the Maximum Entropy partitioning approach is proposed for complex dynamical system modeling such as human motion dynamics. The sampled data collected from the system is partitioned into segmented data sets using the Maximum Entropy approach, and the mode transition logic is then defined. Then, as the local dynamical description for their corresponding partitions, a collection of small-scale neural networks is trained. Following a neural hybrid system model of the system, a set-valued reachability analysis with low computation cost is provided based on interval analysis and a split and combined process to demonstrate the benefits of our approach in computationally expensive tasks. Finally, a numerical examples of the limit cycle and a human behavior modeling example are provided to demonstrate the effectiveness and efficiency of the developed methods. 
    more » « less
  2. ABSTRACT Estimating parameters and their credible intervals for complex system dynamics models is challenging but critical to continuous model improvement and reliable communication with an increasing fraction of audiences. The purpose of this study is to integrate Amortized Bayesian Inference (ABI) methods with system dynamics. Utilizing Neural Posterior Estimation (NPE), we train neural networks using synthetic data (pairs of ground truth parameters and outcome time series) to estimate parameters of system dynamics models. We apply this method to two example models: a simple Random Walk model and a moderately complex SEIRb model. We show that the trained neural networks can output the posterior for parameters instantly given new unseen time series data. Our analysis highlights the potential of ABI to facilitate a principled, scalable, and likelihood‐free inference workflow that enhance the integration of models of complex systems with data. Accompanying code streamlines application to diverse system dynamics models. 
    more » « less
  3. Abstract The reaction-diffusion system is naturally used in chemistry to represent substances reacting and diffusing over the spatial domain. Its solution illustrates the underlying process of a chemical reaction and displays diverse spatial patterns of the substances. Numerical methods like finite element method (FEM) are widely used to derive the approximate solution for the reaction-diffusion system. However, these methods require long computation time and huge computation resources when the system becomes complex. In this paper, we study the physics of a two-dimensional one-component reaction-diffusion system by using machine learning. An encoder-decoder based convolutional neural network (CNN) is designed and trained to directly predict the concentration distribution, bypassing the expensive FEM calculation process. Different simulation parameters, boundary conditions, geometry configurations and time are considered as the input features of the proposed learning model. In particular, the trained CNN model manages to learn the time-dependent behaviour of the reaction-diffusion system through the input time feature. Thus, the model is capable of providing concentration prediction at certain time directly with high test accuracy (mean relative error <3.04%) and 300 times faster than the traditional FEM. Our CNN-based learning model provides a rapid and accurate tool for predicting the concentration distribution of the reaction-diffusion system. 
    more » « less
  4. This paper presents Verisig, a hybrid system approach to verifying safety properties of closed-loop systems using neural networks as controllers. We focus on sigmoid-based networks and exploit the fact that the sigmoid is the solution to a quadratic differential equation, which allows us to transform the neural network into an equivalent hybrid system. By composing the network's hybrid system with the plant's, we transform the problem into a hybrid system verification problem which can be solved using state-of-the-art reachability tools. We show that reachability is decidable for networks with one hidden layer and decidable for general networks if Schanuel's conjecture is true. We evaluate the applicability and scalability of Verisig in two case studies, one from reinforcement learning and one in which the neural network is used to approximate a model predictive controller. 
    more » « less
  5. Wei, Xue-Xin (Ed.)
    Machine learning models have difficulty generalizing to data outside of the distribution they were trained on. In particular, vision models are usually vulnerable to adversarial attacks or common corruptions, to which the human visual system is robust. Recent studies have found that regularizing machine learning models to favor brain-like representations can improve model robustness, but it is unclear why. We hypothesize that the increased model robustness is partly due to the low spatial frequency preference inherited from the neural representation. We tested this simple hypothesis with several frequency-oriented analyses, including the design and use of hybrid images to probe model frequency sensitivity directly. We also examined many other publicly available robust models that were trained on adversarial images or with data augmentation, and found that all these robust models showed a greater preference to low spatial frequency information. We show that preprocessing by blurring can serve as a defense mechanism against both adversarial attacks and common corruptions, further confirming our hypothesis and demonstrating the utility of low spatial frequency information in robust object recognition. 
    more » « less