Abstract An intermediate-complexity general circulation model is used to disentangle changes in the large-scale zonally asymmetric circulation in response to rising greenhouse gases. Particular focus is on the anomalous ridge that develops over the Mediterranean in future climate projections, directly associated with reduced winter precipitation over the region. Specifically, we examine changes in stationary waves forced by land–sea contrast, horizontal oceanic heat fluxes, and orography, following a quadrupling of CO2. The stationary waves associated with these three drivers depend strongly on the climatological state, precluding a linear decomposition of their responses to warming. However, our modeling framework still allows a process-oriented approach to quantify the key drivers and mechanisms of the response. A combination of three similarly important mechanisms is found responsible for the rain-suppressing ridge. The first is part of a global response to warming: elongation of intermediate-scale stationary waves in response to strengthened subtropical winds aloft, previously found to account for hydroclimatic changes in southwestern North America. The second is regional: a downstream response to the North Atlantic warming hole and enhanced warming of the Eurasian landmass relative to the Atlantic Ocean. A third contribution to the Mediterranean Ridge is a phase shift of planetary wave 3, primarily associated with an altered circulation response to orographic forcing. Reduced land–sea contrast in the Mediterranean basin, previously thought to contribute substantially to Mediterranean drying, has a negligible effect in our integrations. This work offers a mechanistic analysis of the large-scale processes governing projected Mediterranean drying, lending increased understanding and credibility to climate model projections.
more »
« less
Climate Conundrum: A Wet or Dry European and Northern African Climate During the Middle Miocene
Abstract End of 21st‐century hydroclimate projections suggest an expansion of subtropical dry zones, with Mediterranean and Sahel regions becoming much drier. However, paleobotanical assemblage evidence from the middle Miocene (17‐12 Ma), suggests both regions were instead humid environments. Here we show that by modifying regional sea surface temperatures (SST) in an Earth System Model (CESM1.2) simulation of the middle Miocene, the increased ocean evaporation and integrated water vapor flux overrides any drying effects associated with warming‐induced land‐surface evaporation driven by atmospheric CO2concentrations. These modifications markedly reduce the bias in the model‐data comparison for this period. A vegetation model (BIOME4) forced with simulated climatologies predicts both regions were dominated by mixed forest, which is largely consistent with the paleobotanical record. This study unveils the potential for wetter subtropical Mediterranean climates associated with warming, presenting an alternative scenario from future drying projections with localized SST warming governing regional climate change.
more »
« less
- PAR ID:
- 10587545
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 21
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Change over recent decades in the world's five Mediterranean Climate Regions (MCRs) of quantities of relevance to water resources, ecosystems and fire are examined for all seasons and placed in the context of changes in large‐scale circulation. Near‐term future projections are also presented. It is concluded that, based upon agreement between observational data sets and modelling frameworks, there is strong evidence of radiatively‐driven drying of the Chilean MCR in all seasons and southwest Australia in winter. Observed drying trends in California in fall, southwest southern Africa in fall, the Pacific Northwest in summer and the Mediterranean in summer agree with radiatively‐forced models but are not reproduced in a model that also includes historical sea surface temperature (SST) forcing, raising doubt about the human‐origin of these trends. Observed drying in the Mediterranean in winter is stronger than can be accounted for by radiative forcing alone and is also outside the range of the SST‐forced ensemble. It is shown that near surface vapour pressure deficit (VPD) is increasing almost everywhere but that, surprisingly, this is contributed to in the Southern Hemisphere subtropics to mid‐latitudes by a decline in low‐level specific humidity. The Southern Hemisphere drying, in terms of precipitation and specific humidity, is related to a poleward shift and strengthening of the westerlies with eddy‐driven subsidence on the equatorward side. Model projections indicate continued drying of Southern Hemisphere MCRs in winter and spring, despite ozone recovery and year‐round drying in the Mediterranean. Projections for the North American MCR are uncertain, with a large contribution from internal variability, with the exception of drying in the Pacific Northwest in summer. Overall the results indicate continued aridification of MCRs other than in North America with important implications for water resources, agriculture and ecosystems.more » « less
-
Using observations and reanalysis, we develop a robust statistical approach based on canonical correlation analysis (CCA) to explore the leading drivers of decadal and longer-term Mediterranean hydroclimate variability during the historical, half-year wet season. Accordingly, a series of CCA analyses are conducted with combined, multi-component large-scale drivers of Mediterranean precipitation and surface air temperatures. The results highlight the decadal-scale North Atlantic Oscillation (NAO) as the leading driver of hydroclimate variations across the Mediterranean basin. Markedly, the decadal variability of Atlantic-Mediterranean sea surface temperatures (SST), whose influence on the Mediterranean climate has so far been proposed as limited to the summer months, is found to enhance the NAO-induced hydroclimate response during the winter half-year season. As for the long-term, century scale trends, anthropogenic forcing, expressed in terms of the global SST warming (GW) signal, is robustly associated with basin-wide increase in surface air temperatures. Our analyses provide more detailed information than has heretofore been presented on the sub-seasonal evolution and spatial dependence of the large-scale climate variability in the Mediterranean region, separating the effects of natural variability and anthropogenic forcing, with the latter linked to a long-term drying of the region due to GW-induced local poleward shift of the subtropical dry zone. The physical understanding of these mechanisms is essential in order to improve model simulations and predic- tion of the decadal and longer hydroclimatic evolution in the Mediterranean area, which can help in developing adaptation strategies to mitigate the effect of climate variability and change on the vulnerable regional population.more » « less
-
Abstract The Miocene (23.03–5.33 Ma) is recognized as a period with close to modern‐day paleogeography, yet a much warmer climate. With large uncertainties in future hydroclimate projections, Miocene conditions illustrate a potential future analog for the Earth system. A recent opportunistic Miocene Model Intercomparison Project 1 (MioMIP1) focused on synthesizing published Miocene climate simulations and comparing them with available temperature reconstructions. Here, we build on this effort by analyzing the hydrological cycle response to Miocene forcings across early‐to‐middle (E2MMIO; 20.03–11.6 Ma) and middle‐to‐late Miocene (M2LMIO; 11.5–5.33 Ma) simulations with CO2concentrations ranging from 200 to 850 ppm and providing a model‐data comparison against available precipitation reconstructions. We find global precipitation increases by ∼2.1 and 2.3% per degree of warming for E2MMIO and M2LMIO simulations, respectively. Models generally agree on a wetter than modern‐day tropics; mid and high‐latitude, however, do not agree on the sign of subtropical precipitation changes with warming. Global monsoon analysis suggests most monsoon regions, except the North American Monsoon, experience higher precipitation rates under warmer conditions. Model‐data comparison shows that mean annual precipitation is underestimated by the models regardless of CO2concentration, particularly in the mid‐ to high‐latitudes. This suggests that the models may not be (a) resolving key processes driving the hydrological cycle response to Miocene boundary conditions and/or (b) other boundary conditions or processes not considered here are critical to reproducing Miocene hydroclimate. This study highlights the challenges in modeling and reconstructing the Miocene hydrological cycle and serves as a baseline for future coordinated MioMIP efforts.more » « less
-
Abstract Regional hydrological sensitivity (i.e., precipitation change per degree local surface warming) contributes substantially to the uncertainty in future precipitation projections over tropical oceans. Here, we investigate the sensitivity of relative precipitation (P*, precipitation divided by the basin average precipitation) to local sea surface temperature (SST) change by dissecting it into three components, namely the sensitivity of P* to relative SST (SSTrel, SST minus the tropical mean SST) changes, the sensitivity of P* to surface convergence changes, and the sensitivity of surface convergence to SST gradient changes. We show that the relationships between P* and SSTrel, and between P*, surface convergence, and SST gradients are largely constant during climate change. This allows us to constrain regional hydrological sensitivity based on present‐day SST‐precipitation relationships. The sensitivity of surface convergence to SST gradient changes is a main source of uncertainty in regional hydrological sensitivity and is likely underestimated in GCMs.more » « less
An official website of the United States government

