Abstract The bulk-boundary correspondence, which links a bulk topological property of a material to the existence of robust boundary states, is a hallmark of topological insulators. However, in crystalline topological materials the presence of boundary states in the insulating gap is not always necessary since they can be hidden in the bulk energy bands, obscured by boundary artifacts of non-topological origin, or, in the case of higher-order topology, they can be gapped altogether. Recently, exotic defects of translation symmetry called partial dislocations have been proposed to trap gapless topological modes in some materials. Here we present experimental observations of partial-dislocation-induced topological modes in 2D and 3D insulators. We particularly focus on multipole higher-order topological insulators built from circuit-based resonator arrays, since crucially they are not sensitive to full dislocation defects, and they have a sublattice structure allowing for stacking faults and partial dislocations.
more »
« less
Topological Edge Spectrum Along Curved Interfaces
Abstract We prove that if the boundary of a topological insulator divides the plane into two regions, each containing arbitrarily large balls, then it acts as a conductor. Conversely, we construct a counterexample to show that topological insulators that fit within strips do not need to admit conducting boundary modes. This constitutes a new setup where the bulk-edge correspondence is violated. Our proof relies on a seemingly paradoxical and underappreciated property of the bulk indices of topological insulators: they are global quantities that can be locally computed.
more »
« less
- Award ID(s):
- 2054589
- PAR ID:
- 10587666
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2024
- Issue:
- 22
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 13870 to 13889
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spectral measurements of boundary-localized topological modes are commonly used to identify topological insulators. For high-order insulators, these modes appear at boundaries of higher codimension, such as the corners of a two-dimensional material. Unfortunately, this spectroscopic approach is only viable if the energies of the topological modes lie within the bulk bandgap, which is not required for many topological crystalline insulators. The key topological feature in these insulators is instead fractional charge density arising from filled bulk bands, but measurements of such charge distributions have not been accessible to date. We experimentally measure boundary-localized fractional charge density in rotationally symmetric two-dimensional metamaterials and find one-fourth and one-third fractionalization. We then introduce a topological indicator that allows for the unambiguous identification of higher-order topology, even without in-gap states, and we demonstrate the associated higher-order bulk-boundary correspondence.more » « less
-
Abstract Symmetry-protected topological crystalline insulators (TCIs) have primarily been characterized by their gapless boundary states. However, in time-reversal- ($${{{{{{{\mathcal{T}}}}}}}}$$ -) invariant (helical) 3D TCIs—termed higher-order TCIs (HOTIs)—the boundary signatures can manifest as a sample-dependent network of 1D hinge states. We here introduce nested spin-resolved Wilson loops and layer constructions as tools to characterize the intrinsic bulk topological properties of spinful 3D insulators. We discover that helical HOTIs realize one of three spin-resolved phases with distinct responses that are quantitatively robust to large deformations of the bulk spin-orbital texture: 3D quantum spin Hall insulators (QSHIs), “spin-Weyl” semimetals, and$${{{{{{{\mathcal{T}}}}}}}}$$ -doubled axion insulator (T-DAXI) states with nontrivial partial axion angles indicative of a 3D spin-magnetoelectric bulk response and half-quantized 2D TI surface states originating from a partial parity anomaly. Using ab-initio calculations, we demonstrate thatβ-MoTe2realizes a spin-Weyl state and thatα-BiBr hosts both 3D QSHI and T-DAXI regimes.more » « less
-
Topological insulators are insulators in the bulk but feature chiral energy propagation along the boundary. This property is topological in nature and therefore robust to disorder. Originally discovered in electronic materials, topologically protected boundary transport has since been observed in many other physical systems. Thus, it is natural to ask whether this phenomenon finds relevance in a broader context. We choreograph a dance in which a group of humans, arranged on a square grid, behave as a topological insulator. The dance features unidirectional flow of movement through dancers on the lattice edge. This effect persists when people are removed from the dance floor. Our work extends the applicability of wave physics to dance.more » « less
-
Photonic topological insulators exhibit bulk-boundary correspondence, which requires that boundary-localized states appear at the interface formed between topologically distinct insulating materials. However, many topological photonic devices share a boundary with free space, which raises a subtle but critical problem as free space is gapless for photons above the light-line. Here, we use a local theory of topological materials to resolve bulk-boundary correspondence in heterostructures containing gapless materials and in radiative environments. In particular, we construct the heterostructure’s spectral localizer, a composite operator based on the system’s real-space description that provides a local marker for the system’s topology and a corresponding local measure of its topological protection; both quantities are independent of the material’s bulk band gap (or lack thereof). Moreover, we show that approximating radiative outcoupling as material absorption overestimates a heterostructure’s topological protection. As the spectral localizer is applicable to systems in any physical dimension and in any discrete symmetry class, our results show how to calculate topological invariants, quantify topological protection, and locate topological boundary-localized resonances in topological materials that interface with gapless media in general.more » « less
An official website of the United States government

