skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High rates of rock organic carbon oxidation sustained as Andean sediment transits the Amazon foreland-floodplain
The oxidation of organic carbon contained within sedimentary rocks (“petrogenic” carbon, or hereafter OCpetro) emits nearly as much CO2as is released by volcanism, thereby playing a key role in the long-term global C budget. High erosion rates in mountains have been shown to increase OCpetrooxidation. However, these settings also export unweathered material that may continue to react in downstream floodplains. The relative importance of OCpetrooxidation in mountains versus floodplains remains difficult to assess as disparate methods have been used in the different environments. Here, we investigate the sources and fluxes of rhenium (Re) in the Rio Madre de Dios to quantify OCpetrooxidation from the Andes to the Amazon floodplain using a common approach. Dissolved rhenium concentrations (n = 131) range from 0.01 to 63 pmol L−1and vary depending on lithology and geomorphic setting. We find that >75% of the dissolved Re derives from OCpetrooxidation and that this proportion increases downstream. We estimate that in the Andes, OCpetrooxidation releases 11.2+4.5/−2.8tC km−2y−1of CO2, which corresponds to ~41% of the total OCpetrodenudation (sum of oxidized and solid OCpetro). A Re mass balance across the Rio Madre de Dios shows that 46% of OCpetrooxidation takes place in the Andes, 14% in the foreland-lowlands, and 40% in the Andean-fed floodplains. This doubling of OCpetrooxidation flux downstream of the Andes demonstrates that, when present, floodplains can greatly increase OCpetrooxidation and CO2release.  more » « less
Award ID(s):
1851309
PAR ID:
10587669
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
39
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon dioxide (CO 2 ) supersaturation in lakes and rivers worldwide is commonly attributed to terrestrial–aquatic transfers of organic and inorganic carbon (C) and subsequent, in situ aerobic respiration. Methane (CH 4 ) production and oxidation also contribute CO 2 to freshwaters, yet this remains largely unquantified. Flood pulse lakes and rivers in the tropics are hypothesized to receive large inputs of dissolved CO 2 and CH 4 from floodplains characterized by hypoxia and reducing conditions. We measured stable C isotopes of CO 2 and CH 4 , aerobic respiration, and CH 4 production and oxidation during two flood stages in Tonle Sap Lake (Cambodia) to determine whether dissolved CO 2 in this tropical flood pulse ecosystem has a methanogenic origin. Mean CO 2 supersaturation of 11,000 ± 9,000 μ atm could not be explained by aerobic respiration alone. 13 C depletion of dissolved CO 2 relative to other sources of organic and inorganic C, together with corresponding 13 C enrichment of CH 4 , suggested extensive CH 4 oxidation. A stable isotope-mixing model shows that the oxidation of 13 C depleted CH 4 to CO 2 contributes between 47 and 67% of dissolved CO 2 in Tonle Sap Lake. 13 C depletion of dissolved CO 2 was correlated to independently measured rates of CH 4 production and oxidation within the water column and underlying lake sediments. However, mass balance indicates that most of this CH 4 production and oxidation occurs elsewhere, within inundated soils and other floodplain habitats. Seasonal inundation of floodplains is a common feature of tropical freshwaters, where high reported CO 2 supersaturation and atmospheric emissions may be explained in part by coupled CH 4 production and oxidation. 
    more » « less
  2. This study examines dissolved rhenium (Re) concentrations as a function of water runoff using river samples from two contrasting mountainous watersheds, the Eel and Umpqua Rivers in the Pacific Northwest, USA. These watersheds share many key characteristics in terms of size, discharge, climate, and vegetation, but they have a 15-fold difference in sediment yield due to differences in their tectonic setting and uplift and erosion rates. We evaluate concentration-runoff (C-R) relationships and ratios of coefficients of variation (CVC/CVR) for major cations, anions, dissolved inorganic carbon, selected trace elements including Re, and 87Sr/86Sr ratios. Recent research outlines the potential of Re to serve as a tracer for the oxidation of ancient/fossil organic matter because of its close association with petrogenic carbon (OCpetro) in rocks. In both the Eel and Umpqua Rivers, our measurements show that Re behaves similarly to major weathering derived-solutes corrected for atmospheric input, such as Ca2+*, Mg2+*, and Na+* with modest dilution across all tributaries with increasing runoff. Rhenium behaves dissimilarly from other trace elements, such as Mo and U, and is also dissimilar to biologically-cycled nutrients, such as NO3 – , PO4 3 , and K+*, suggesting differences in sources, solute generation mechanisms, and flowpaths. Rhenium behavior is also distinct from that of colloids, which have increasing concentrations with increasing runoff. We find that Re and sulfate corrected for atmospheric input (SO4 2 *) have distinct CR relationships, in which SO4 2 * undergoes greater dilution with increasing runoff. This implies that Re is not dominantly sourced from sulfide weathering, which leaves primary bedrock minerals and OCpetro hosted in bedrock of these watersheds as the likely dominant sources of dissolved Re release. At mean discharge, Re concentration in the Eel river (3.5 pmol L-1) is more than two times greater than Re concentrations in the Umpqua River (1.5 pmol L-1). Furthermore, comparison of two tributary watersheds with similar bedrock but marked differences in erosion rates show higher Re concentrations in Bull Creek (erosion rate of 0.5 mm yr 1) relative to Elder Creek (erosion rate of 0.2 mm yr 1). The results of this study suggest that dissolved Re in the Eel and Umpqua River basins is likely derived from primary mineral dissolution or OCpetro oxidation, and Re fluxes are higher in areas with higher erosion rates, suggesting that tectonic setting is one factor that controls Re release and therefore OCpetro oxidation. 
    more » « less
  3. Abstract This paper is the first comprehensive synthesis of what is currently known about the different natural and anthropogenic fluxes of rhenium (Re) on Earth's surface. We highlight the significant role of anthropogenic mobilization of Re, which is an important consideration in utilizing Re in the context of a biogeochemical tracer or proxy. The largest natural flux of Re derives from chemical weathering and riverine transport to the ocean (dissolved = 62 × 106 g yr−1and particulate = 5 × 106 g yr−1). This review reports a new global average [Re] of 16 ± 2 pmol L−1, or 10 ± 1 pmol L−1for the inferred pre‐anthropogenic concentration without human impact, for rivers draining to the ocean. Human activity via mining (including secondary mobilization), coal combustion, and petroleum combustion mobilize approximately 560 × 106 g yr−1Re, which is more than any natural flux of Re. There are several poorly constrained fluxes of Re that merit further research, including: submarine groundwater discharge, precipitation (terrestrial and oceanic), magma degassing, and hydrothermal activity. The mechanisms and the main host phases responsible for releasing (sources) or sequestrating (sinks) these fluxes remain poorly understood. This study also highlights the use of dissolved [Re] concentrations as a tracer of oxidation of petrogenic organic carbon, and stable Re isotopes as proxies for changes in global redox conditions. 
    more » « less
  4. Abstract Measurements of riverine dissolved inorganic carbon, total alkalinity (AT), pH, and the partial pressure of carbon dioxide (pCO2) can provide insights into the biogeochemical function of rivers, including the processes that control biological production, chemical speciation, and air‐water CO2fluxes. The complexity created by these combined processes dictates that studies of inorganic carbon be made over broad spatial and temporal scales. Time‐series data like these are relatively rare, however, because sampling and measurements are labor intensive and, for some variables, good measurement quality is difficult to achieve (e.g., pH). In this study, spectrophotometric pH and ATwere quantified with high precision and accuracy at biweekly to monthly intervals over a four‐year period (2018–2021) along 216 km of the Upper Clark Fork River (UCFR) in the northern Rocky Mountains, USA. We use these and other time‐series data to provide insights into the processes that control river inorganic carbon, with a focus onpCO2and air‐water CO2fluxes. We found that seasonal snowmelt runoff increasedpCO2and that expected increase and decrease ofpCO2due to seasonal heating and cooling were likely offset by an increase and loss of algal biomass, respectively. Overall, the UCFR was a small net source (0.08 ± 0.14 mol m−2 d−1) of CO2to the atmosphere over the four‐year study period with highly variable annual averages (0.0–0.10 mol m−2 d−1). The seasonally correlated, offsetting mechanisms highlight the challenges in predictingpCO2and air‐water CO2fluxes in rivers. 
    more » « less
  5. Abstract Permafrost degradation is altering biogeochemical processes throughout the Arctic. Thaw‐induced changes in organic matter transformations and mineral weathering reactions are impacting fluxes of inorganic carbon (IC) and alkalinity (ALK) in Arctic rivers. However, the net impact of these changing fluxes on the concentration of carbon dioxide in the atmosphere (pCO2) is relatively unconstrained. Resolving this uncertainty is important as thaw‐driven changes in the fluxes of IC and ALK could produce feedbacks in the global carbon cycle. Enhanced production of sulfuric acid through sulfide oxidation is particularly poorly quantified despite its potential to remove ALK from the ocean‐atmosphere system and increasepCO2, producing a positive feedback leading to more warming and permafrost degradation. In this work, we quantified weathering in the Koyukuk River, a major tributary of the Yukon River draining discontinuous permafrost in central Alaska, based on water and sediment samples collected near the village of Huslia in summer 2018. Using measurements of major ion abundances and sulfate () sulfur (34S/32S) and oxygen (18O/16O) isotope ratios, we employed the MEANDIR inversion model to quantify the relative importance of a suite of weathering processes and their net impact onpCO2. Calculations found that approximately 80% of in mainstem samples derived from sulfide oxidation with the remainder from evaporite dissolution. Moreover,34S/32S ratios,13C/12C ratios of dissolved IC, and sulfur X‐ray absorption spectra of mainstem, secondary channel, and floodplain pore fluid and sediment samples revealed modest degrees of microbial sulfate reduction within the floodplain. Weathering fluxes of ALK and IC result in lower values ofpCO2over timescales shorter than carbonate compensation (∼104 yr) and, for mainstem samples, higher values ofpCO2over timescales longer than carbonate compensation but shorter than the residence time of marine (∼107 yr). Furthermore, the absolute concentrations of and Mg2+in the Koyukuk River, as well as the ratios of and Mg2+to other dissolved weathering products, have increased over the past 50 years. Through analogy to similar trends in the Yukon River, we interpret these changes as reflecting enhanced sulfide oxidation due to ongoing exposure of previously frozen sediment and changes in the contributions of shallow and deep flow paths to the active channel. Overall, these findings confirm that sulfide oxidation is a substantial outcome of permafrost degradation and that the sulfur cycle responds to permafrost thaw with a timescale‐dependent feedback on warming. 
    more » « less