skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Concentrations of Volatile Methyl Siloxanes in New York City Reflect Emissions from Personal Care and Industrial Use
Volatile methyl siloxanes (VMS) are a group of organosilicon compounds of interest because of their potential health effects, their ability to form secondary organic aerosols, and their use as tracer compounds. VMS are emitted in the gas-phase from using consumer and personal care products, including deodorants, lotions, and hair conditioners. Because of this emission route, airborne concentrations are expected to increase with population density, although there are few studies in large urban centers. Here, we report summertime concentrations and daily variations of VMS congeners measured in New York City. Median concentrations of the 6 studied congeners, D3 (20 ng m−3), D4 (57 ng m−3), D5 (230 ng m−3), D6 (11 ng m−3), L5 (2.5 ng m−3), and L7 (1.3 ng m−3) are among the highest reported outdoor concentrations in the literature to date. Average congener ratios of D5:D4 and D5:D6 were consistent with previously reported emissions ratios, suggesting that concentrations were dominated by local emissions. Measured concentrations agree with previously published results from a Community Multiscale Air Quality model and support commonly accepted emissions rates for D4, D5, and D6 of 32.8, 135, and 6.1 mg per capita per day. Concentrations of D4, D5, D6, L5, and L7 and total VMS were significantly lower during the day than during the night, consistent with daytime oxidation reactivity. Concentrations of D3 did not show the same diurnal trend but exhibited a strong directional dependence, suggesting that it may be emitted by industrial point sources in the area rather than personal care product use. Concentrations of all congeners had large temporal variations but showed relatively weak relationships with wind speed, temperature, and mixing height.  more » « less
Award ID(s):
2028764
PAR ID:
10587775
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
58
Issue:
20
ISSN:
0013-936X
Page Range / eLocation ID:
8835 to 8845
Subject(s) / Keyword(s):
volatile methyl siloxanes volatile organic compounds urban air quality oxidation diurnal New York City outdoor air emissions
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cyclic volatile methyl siloxanes (cVMS) are anthropogenic chemicals that have come under scrutiny due to their widespread use and environmental persistence. Significant data on environmental concentrations and persistence of these chemicals exists, but their oxidation mechanism is poorly understood, preventing a comprehensive understanding of the environmental fate and impact of cVMS. We performed experiments in an environmental chamber to characterize the first-generation oxidation products of hexamethylcyclotrisiloxane (D3), octamethylcyclotetrasiloxane (D4), and decamethylcyclopentasiloxane (D5) under different peroxy radical fates (unimolecular reaction or bimolecular reaction with either NO or HO2) that approximate a range of atmospheric compositions. While the identity of the oxidation products from D3 changed as a function of the peroxy radical fate, the identity and yield of D4 and D5 oxidation products remained largely constant. We compare our results against the output from a kinetic model of cVMS oxidation chemistry. The reaction mechanism used in the model is developed using a combination of previously proposed cVMS oxidation reactions and standard atmospheric oxidation radical chemistry. We find that the model is unable to reproduce our measurements, particularly in the case of D4 and D5. The products that are poorly represented in the model help to identify possible branching points in the mechanism, which require further investigation. Additionally, we estimated the physical properties of the cVMS oxidation products using structure–activity relationships and found that they should not be significantly partitioned to organic or aqueous aerosol. The results suggest that cVMS first-generation oxidation products are also long-lived in the atmosphere and that environmental monitoring of these compounds is necessary to understand the environmental chemistry and loading of cVMS. 
    more » « less
  2. Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Its anthropogenic emissions are regulated by global, regional, and local policies. Here, we investigate Hg sources in the coastal city of Boston, the third largest metropolitan area in the Northeastern United States. With a median of 1.37 ng m −3 , atmospheric Hg concentrations measured from August 2017 to April 2019 were at the low end of the range reported in the Northern Hemisphere and in the range reported at North American rural sites. Despite relatively low ambient Hg concentrations, we estimate anthropogenic emissions to be 3–7 times higher than in current emission inventories using a measurement-model framework, suggesting an underestimation of small point and/or nonpoint emissions. We also test the hypothesis that a legacy Hg source from the ocean contributes to atmospheric Hg concentrations in the study area; legacy emissions (recycling of previously deposited Hg) account for ∼60% of Hg emitted annually worldwide (and much of this recycling takes place through the oceans). We find that elevated concentrations observed during easterly oceanic winds can be fully explained by low wind speeds and recirculating air allowing for accumulation of land-based emissions. This study suggests that the influence of nonpoint land-based emissions may be comparable in size to point sources in some regions and highlights the benefits of further top-down studies in other areas. 
    more » « less
  3. The Late Cretaceous paleogeography of Southern California potentially plays a central role in resolving conflicting models for postulated large-magnitude dextral translations along the western margin of North America (the Baja-BC hypothesis) and the beginning of the Laramide orogeny. The Mt. Pinos sector of the Southern California Batholith provides a unique window into this time because it preserves evidence for a kinematically and temporally partitioned fault system that includes a ductile shear zone (the Tumamait shear zone) and a ductile-to-brittle thrust fault (the Sawmill thrust). These two structures accommodated intra-arc strain during the Late Cretaceous to Paleocene during three phases of deformation (D3-D5) that are superimposed on older (D1 and D2) structures. D1 structures only occur in Pre-Mesozoic rocks and provide a reference frame for understanding subsequent deformation phases. D2 structures form part of a previously unmapped dextral-normal shear zone that predates the Tumamait shear zone. The initiation of displacements within the Tumamait shear zone is recorded by the formation of D3 mylonites which everywhere record reverse-sinistral movement. Petrochronology of syn- D3 titanites give lower-intercept 206Pb/238U dates ranging from 77.0 to 74.0 Ma and upper amphibolite-facies temperatures ranging from 699 to 718°C. Subsequent folding of the D3 mylonites during D4 was synchronous with late-stage, peraluminous magmatism at ca. 70 Ma. Near the Sawmill thrust, the D4 event resulted in a S4 crenulation cleavage and asymmetric, overturned folds that record top-to-the-NE tectonic displacements. NE-directed thrusting along the Sawmill thrust occurred at 67-66 Ma is interpreted to have been kinematically linked to D4 deformation. This thrust placed upper plate rocks of the Southern California Batholith above the Late Cretaceous Pelona schist. We interpret deformational fabrics in the Mt. Pinos area to record a kinematically partitioned, transpressional system that involved sinistral-reverse shearing (D3) closely followed by folding and arc-directed thrusting (D4-D5). We speculate that D3 structures developed in response to opening of the Kula-Farallon plate boundary and we hypothesize that the Kula-Farallon-North American plate triple junction was located at the present-day location of the Garlock Fault at ca. 85 Ma thereby segmenting the arc at this location. This geometry resulted in in dextral shearing in the Sierra Nevada Batholith (and northward) and sinistral shearing in the Southern California Batholith and Baja California. Continued subduction of the Farallon plate beneath the Southern California Batholith led to a major arc flare-up event from 90-70 Ma which was associated with D3 sinistral transpression. We interpret D3-D5 structures to record oblique convergence and the underthrusting of the Hess oceanic plateau beneath the Southern California Batholith at ca. 70-66 Ma. Our model for the segmentation of the California arc is compatible with a moderate (1000-1600 km), ‘Sierra-BC’ translation model in which the Insular superterrane was located north of the Southern California Batholith in the Late Cretaceous. 
    more » « less
  4. Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110–1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50–310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4–6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere. 
    more » « less
  5. Volatile organic compound (VOC) emissions and subsequent oxidation contribute to the formation of secondary pollutants and poor air quality in general. As more VOCs at lower mixing ratios have become the target of air quality investigations, their quantification has been aided by technological advancements in proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). However, such quantification requires appropriate instrument background measurements and calibrations, particularly for VOCs without calibration standards. This study utilized a Vocus PTR-TOF-MS coupled with a gas chromatograph for real-time and speciated measurements of ambient VOCs in Boulder, Colorado, during spring 2021. The aim of these measurements was to understand and characterize instrument response and temporal variability as to inform the quantification of a broader range of detected VOCs. Fast, frequent calibrations were made every 2 h in addition to daily multipoint calibrations. Sensitivities derived from the fast calibrations were 5 ± 6 % (average and 1 standard deviation) lower than those derived from the multipoint calibrations due to an offset between the calibrations and instrument background measurement. This offset was caused, in part, by incomplete mixing of the standard with diluent. These fast calibrations were used in place of a normalization correction to account for variability in instrument response and accounted for non-constant reactor conditions caused by a gradual obstruction of the sample inlet. One symptom of these non-constant conditions was a trend in fragmentation, although the greatest observed variability was 6 % (1 relative standard deviation) for isoprene. A PTR Data Toolkit (PTR-DT) was developed to assess instrument performance and rapidly estimate the sensitivities of VOCs which could not be directly calibrated on the timescale of the fast calibrations using the measured sensitivities of standards, molecular properties, and simple reaction kinetics. Through this toolkit, the standards' sensitivities were recreated within 1 ± 8 % of the measured values. Three clean-air sources were compared: a hydrocarbon trap, zero-grade air and ultra-high purity nitrogen, and a catalytic zero-air generator. The catalytic zero-air generator yielded the lowest instrument background signals for the majority of ions, followed by the hydrocarbon trap. Depending on the ionization efficiency, product ion fragmentation, ion transmission, and instrument background, standards' limits of detection (5 s measurement integration) derived from the catalytic zero-air generator and the fast calibration sensitivities ranged from 2 ppbv (methanol) to 1 pptv (decamethylcyclopentasiloxane; D5 siloxane) with most standards having detection limits below 20 pptv. Finally, applications of measurements with low detection limits are considered for a few low-signal species including sub-parts-per-trillion by volume (pptv) enhancements of icosanal (and isomers; 1 min average) in a plume of cooking emissions, and sub-parts-per-trillion by volume enhancements in dimethyl disulfide in plumes containing other organosulfur compounds. Additionally, chromatograms of hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and decamethylcyclopentasiloxane (D3, D4, and D5 siloxanes, respectively), combined with high sensitivity, suggest that online measurements can reasonably be associated with the individual isomers. 
    more » « less