skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective quality factor tuning mechanisms in micromechanical resonators
Quality factor (Q) is an important property of micro- and nano-electromechanical (MEM/NEM) resonators that underlie timing references, frequency sources, atomic force microscopes, gyroscopes, and mass sensors. Various methods have been utilized to tune the effective quality factor of MEM/NEM resonators, including external proportional feedback control, optical pumping, mechanical pumping, thermal-piezoresistive pumping, and parametric pumping. This work reviews these mechanisms and compares the effective Q tuning using a position-proportional and a velocity-proportional force expression. We further clarify the relationship between the mechanical Q, the effective Q, and the thermomechanical noise of a resonator. We finally show that parametric pumping and thermal-piezoresistive pumping enhance the effective Q of a micromechanical resonator by experimentally studying the thermomechanical noise spectrum of a device subjected to both techniques.  more » « less
Award ID(s):
1662464
PAR ID:
10588297
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Reviews
Volume:
5
Issue:
4
ISSN:
1931-9401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Resonant sensors based on micro- and nano-electro mechanical systems (M/NEMS) are ubiquitous in many sensing applications due to their outstanding performance capabilities, which are directly proportional to the quality factor (Q) of the devices. We address here a recurrent question in the field: do dynamical techniques that modify the effectiveQ(namely parametric pumping and direct drive velocity feedback) affect the performance of said sensors? We develop analytical models of both cases, while remaining in the linear regime, and introduce noise in the system from two separate sources: thermomechanical and amplifier (read-out) noise. We observe that parametric pumping enhances the quality factor in the amplitude response, but worsens it in the phase response on the resonator. In the case of feedback, we find thatQis enhanced in both cases. Then, we establish a solution for the noisy problem with direct drive and parametric pumping simultaneously. We also find that, in the case when thermomechanical noise dominates, no benefit can be obtained from either artificialQ-enhancement technique. However, in the case when amplifier noise dominates, we surprisingly observe that a significant advantage can only be achieved using parametric pumping in the squeezing region. 
    more » « less
  2. Parametric amplification of ultrasmall signals from electromechanical transducers directly in the mechanical domain, prior to electrical readout, is an intriguing challenge and is important for both scientific measurements and technologies utilizing micro/nanoelectromechanical systems (MEMS/NEMS). Here, we report on parametric amplification of aluminum nitride (AlN) multimode NEMS resonators (with broad intrinsic dynamic ranges up to 90 dB) for enabling detection of their thermomechanical resonances in both optical and electrical readout schemes simultaneously. The experiments demonstrate that, upon parametric pumping, the electrically transduced thermomechanical motions experience significant amplification, surpassing the extrinsic electronic noise level, while still below the parametric pumping threshold. We achieve noise matching that enables room temperature force sensitivity of 0.46 fN/Hz1/2. We observe high parametric gain up to 650, accompanied by a strong boost (over 3.5×) in the effective quality factor (Qeff, from 9000 to 32 000). These findings underscore the utilities of parametric amplification in noise matching and improving force sensitivity for NEMS transducers and their emerging applications. 
    more » « less
  3. We derive the displacement noise spectrum of a parametrically pumped resonator below the onset for self-excited oscillations. We extend the fluctuation-dissipation response of a thermomechanical-noise-driven resonator to the case of degenerate parametric pumping as a function of pump magnitude and frequency while properly accounting for the quadrature-dependence of the parametric thermal noise squeezing. We use measurements with a microelectromechanical cantilever to corroborate our model. 
    more » « less
  4. Sensitive capacitive transduction of micromechanical resonators can contribute significant electrical dissipation, which degrades the quality factor of the eigenmodes. We theoretically and experimentally demonstrate a scheme for isolating the electrical damping of a mechanical resonator due to Ohmic dissipation in the readout amplifier. The quality factor suppression arising from the amplifier is strongly dependent on the amplifier feedback resistance and parasitic capacitance. By studying the thermomechanical displacement noise spectrum of a doubly clamped micromechanical beam, we confirm that electrical dissipation tunes the actual, not effective, quality factor. Electrical dissipation is an important consideration in the design of sensitive capacitive displacement transducers, which are a key component in resonant sensors and oscillators. 
    more » « less
  5. We experimentally demonstrate and numerically analyze large arrays of whispering gallery resonators. Using fluorescent mapping, we measure the spatial distribution of the cavity ensemble’s resonances, revealing that light reaches distant resonators in various ways, including while passing through dark gaps, resonator groups, or resonator lines. Energy spatially decays exponentially in the cavities. Our practically infinite periodic array of resonators, with a quality factor (Q) exceeding 107, might impact a new type of photonic ensembles for nonlinear optics and lasers using our cavity continuum that is distributed, while having high-Qresonators as unit cells. 
    more » « less