The rapid pace of urbanization and socioeconomic development encourage people to spend more time together and therefore monitoring of human dynamics is of great importance, especially for facilities of elder care and involving multiple activities. Traditional approaches are limited due to their high deployment costs and privacy concerns (e.g., camera-based surveillance or sensor-attachment-based solutions). In this work, we propose to provide a fine-grained comprehensive view of human dynamics using existing WiFi infrastructures often available in many indoor venues. Our approach is low-cost and device-free, which does not require any active human participation. Our system aims to provide smart human dynamics monitoring through participant number estimation, human density estimation and walking speed and direction derivation. A semi-supervised learning approach leveraging the non-linear regression model is developed to significantly reduce training efforts and accommodate different monitoring environments. We further derive participant number and density estimation based on the statistical distribution of Channel State Information (CSI) measurements. In addition, people's walking speed and direction are estimated by using a frequency-based mechanism. Extensive experiments over 12 months demonstrate that our system can perform fine-grained effective human dynamic monitoring with over 90% accuracy in estimating participants number, density, and walking speed and direction at various indoor environments.
more »
« less
SWiLoc: Fusing Smartphone Sensors and WiFi CSI for Accurate Indoor Localization
Dead reckoning is a promising yet often overlooked smartphone-based indoor localization technology that relies on phone-mounted sensors for counting steps and estimating walking directions, without the need for extensive sensor or landmark deployment. However, misalignment between the phone’s direction and the user’s actual movement direction can lead to unreliable direction estimates and inaccurate location tracking. To address this issue, this paper introduces SWiLoc (Smartphone and WiFi-based Localization), an enhanced direction correction system that integrates passive WiFi sensing with smartphone-based sensing to form Correction Zones. Our two-phase approach accurately measures the user’s walking directions when passing through a Correction Zone and further refines successive direction estimates outside the zones, enabling continuous and reliable tracking. In addition to direction correction, SWiLoc extends its capabilities by incorporating a localization technique that leverages corrected directions to achieve precise user localization. This extension significantly enhances the system’s applicability for high-accuracy localization tasks. Additionally, our innovative Fresnel zone-based approach, which utilizes unique hardware configurations and a fundamental geometric model, ensures accurate and robust direction estimation, even in scenarios with unreliable walking directions. We evaluate SWiLoc across two real-world environments, assessing its performance under varying conditions such as environmental changes, phone orientations, walking directions, and distances. Our comprehensive experiments demonstrate that SWiLoc achieves an average 75th percentile error of 8.89 degrees in walking direction estimation and an 80th percentile error of 1.12 m in location estimation. These figures represent reductions of 64% and 49%, respectively for direction and location estimation error, over existing state-of-the-art approaches.
more »
« less
- Award ID(s):
- 2104337
- PAR ID:
- 10588408
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 24
- Issue:
- 19
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 6327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Indoor positioning systems (IPSes) can enable many location-based services in large indoor venues where GPS signals are unavailable or unreliable. Among the most viable types of IPSes, RSS-IPSes rely on ubiquitous smartphones and indoor WiFi infrastructures and explore distinguishable received signal strength (RSS) measurements at different indoor locations as their location fingerprints. RSS-IPSes are unfortunately vulnerable to physical-layer RSS attacks that cannot be thwarted by conventional cryptographic techniques. Existing defenses against RSS attacks are all subject to an inherent tradeoff between indoor positioning accuracy and attack resilience. This paper presents the design and evaluation of MV-IPS, a novel RSS-IPS based on weighted multi-voting, which does not suffer from this tradeoff. In MV-IPS, every WiFi access point (AP) that receives a user’s RSS measurement gives a weighted vote for every reference location, and the reference location that receives the highest accumulative votes from all APs is output as the user’s most likely position. Trace-driven simulation studies based on real RSS measurements demonstrate that MV-IPS can achieve much higher positioning accuracy than prior solutions no matter whether RSS attacks are present.more » « less
-
There are a wide variety of mobile phone emergency response applications exist for both indoor and outdoor environments. However, outdoor applications mostly provide accident and navigation information to users, and indoor applications are limited to the unavailability of GPS positioning and WiFi access problems. This paper describes the proposed mobile augmented reality system (MARS) that allows both outdoor and indoor users to retrieve and manage information for emergency response and navigation that is spatially registered with the real world. The proposed MARS utilizes feature extraction for location sensing in indoor environments as during emergencies GPS and WiFi systems might not work. This paper describes the implementation of this MARS deployed on tablets and smartphones for building evacuation purposes. The MARS delivers critical evacuation information to smartphone users in the indoor environment and navigation information in the outdoor environments. A limited user study was conducted to test the effectiveness of the proposed MARS using the mobile phone usability questionnaire (MPUQ) framework. The results show that AR features were well integrated into the MARS and it will help identify the nearest exit in the building during the emergency evacuation.more » « less
-
This demonstration presents the Location-Specific Public Broadcast system, in which localization and wireless broadcasts are combined to deliver a scalable, privacy preserving, and generic solution to location-based services. Other interactive location-based systems either preload information on the user devices, which are usually bulky, difficult to update and have to be custom-made for each venue, or fetch information from cloud based on location, which sacrifices user privacy. In our system, a wireless access point continuously broadcasts information tagged by locations of interest, and the mobile devices performing passive localization select and display the information pertinent to themselves. In this case, the location-specific information is stored only on the WiFi AP, and the phone app would be ultra lightweight with only the location calculation and information filtering functionalities, which can be used in any space. We envision our solution being adopted in public places, such as museums, aquariums, etc., for location-specific information delivery purposes, like enhancing interactive experience for visitors.more » « less
-
This paper presents the WiFi-Sensor-for-Robotics (WSR) toolbox, an open source C++ framework. It enables robots in a team to obtain relative bearing to each other, even in non-line-of-sight (NLOS) settings which is a very challenging problem in robotics. It does so by analyzing the phase of their communicated WiFi signals as the robots traverse the environment. This capability, based on the theory developed in our prior works, is made available for the first time as an opensource tool. It is motivated by the lack of easily deployable solutions that use robots' local resources (e.g WiFi) for sensing in NLOS. This has implications for localization, ad-hoc robot networks, and security in multi-robot teams, amongst others. The toolbox is designed for distributed and online deployment on robot platforms using commodity hardware and on-board sensors. We also release datasets demonstrating its performance in NLOS and line-of-sight (LOS) settings for a multi-robot localization usecase. Empirical results show that the bearing estimation from our toolbox achieves mean accuracy of 5.10 degrees. This leads to a median error of 0.5m and 0.9m for localization in LOS and NLOS settings respectively, in a hardware deployment in an indoor office environment.more » « less
An official website of the United States government

