Abstract Future changes in the Beaufort Gyre liquid freshwater content (LFWC) are important for the local and global climate. However, traditional climate models cannot resolve oceanic and atmospheric eddies that are critical to the LFWC variations. In this study, we investigate physical processes controlling Beaufort Gyre LFWC changes in an eddy‐resolving simulation. The model simulation largely reproduces the observed LFWC changes, and projects a long‐term LFWC increase with an intensification of its decadal variability during the 21st century. Freshwater budget analysis suggests that future LFWC changes are strongly influenced by sea ice melt. The conversion from solid to liquid phase provides more liquid freshwater into the ocean. Meanwhile, sea ice loss enhances the efficiency of air‐sea momentum transfer, leading to increased wind‐driven freshwater convergence and its variability. The decadal variation of the LFWC will regulate Arctic freshwater exports and coincident with an O (0.5 Sv) change in the meridional overturning circulation.
more »
« less
Can the Marked Arctic Ocean Freshwater Content Increases of the Last Two Decades Be Explained Within Observational Uncertainty?
Abstract The freshwater content of the Arctic Ocean has increased dramatically in the last two decades, particularly in the Beaufort Gyre. However, quantifying the sources of this change is an observational challenge and has historically been limited by methodological differences across studies. Here we derive observation‐based freshwater budgets from volume and mass budgets for the Arctic Ocean and the Beaufort Gyre from 2003 to 2020. Our budgets include all sources and sinks (river runoff, precipitation minus evaporation, land ice melt, sea ice export, sea ice melt, and ocean fluxes) as well as volume and mass storage terms measured by satellite. We find that Arctic freshwater changes are dominated by changes in the Beaufort Gyre, and we reconcile this with previous studies that argue for freshwater compensation between the Beaufort Gyre and the rest of the Arctic. We use inverse methods to close the volume and mass budgets within observational uncertainty and link the observed Arctic freshwater changes to the sources and sinks. Our budget analysis demonstrates that small changes to the ocean fluxes (smaller than we can measure) can account for all freshwater storage changes in the Arctic, highlighting the need for more careful accounting and detailed ocean observations in this rapidly changing environment.
more »
« less
- PAR ID:
- 10588709
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 130
- Issue:
- 2
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Under-ice eddies are prevalent in the major circulation system in the western Arctic Ocean, the Beaufort Gyre. Theoretical studies hypothesize that the eddy-driven overturning and the ice-ocean drag are crucial mechanisms of the gyre equilibration in response to atmospheric winds. However, due to severe weather conditions and limitations of remote sensing instruments, there are only sparse eddy observations in the ice-covered Arctic Ocean. Hence, the evolution of the under-ice eddy field, its impact on the gyre variability, and their mutual response to the ongoing Arctic warming remain uncertain. Here, we infer the characteristics of the under-ice eddy field by establishing its tight connection to the angular velocities of isolated spinning sea ice floes in marginal ice zones. Using over two decades of satellite observations of marginal ice zones in the western Arctic Ocean, we identified and tracked thousands of floes and used idealized eddy modeling to infer the interannual evolution of the eddy energetics underneath the ice. We find that the eddy field is strongly correlated to the strength of the Beaufort Gyre on interannual timescales, which provides the major observational evidence consistent with the hypothesis of the gyre equilibration by eddies. The inferred trends over the past two decades signify that the gyre and its eddy field have been intensifying as the sea ice cover has been declining. Our results imply that with continuing sea ice decline, the eddy field and the Beaufort Gyre will keep intensifying and leading to enhanced transport of freshwater and biogeochemical tracers.more » « less
-
The Arctic Ocean's Beaufort Gyre is a dominant feature of the Arctic system, a prominent indicator of climate change, and possibly a control factor for high-latitude climate. The state of knowledge of the wind-driven Beaufort Gyre is reviewed here, including its forcing, relationship to sea-ice cover, source waters, circulation, and energetics. Recent decades have seen pronounced change in all elements of the Beaufort Gyre system. Sea-ice losses have accompanied an intensification of the gyre circulation and increasing heat and freshwater content. Present understanding of these changes is evaluated, and time series of heat and freshwater content are updated to include the most recent observations.more » « less
-
Abstract The Weddell Gyre mediates carbon exchange between the abyssal ocean and atmosphere, which is critical to global climate. This region also features large and highly variable freshwater fluxes due to seasonal sea ice, net precipitation, and glacial melt; however, the impact of these freshwater fluxes on the regional carbon cycle has not been fully appreciated. Using a novel budget analysis of dissolved inorganic carbon (DIC) mass in the Biogeochemical Southern Ocean State Estimate, we highlight two freshwater‐driven transports. Where freshwater with minimal DIC enters the ocean, it displaces DIC‐rich seawater outwards, driving a lateral transport of 75 ± 5 Tg DIC/year. Additionally, sea ice export requires a compensating import of seawater, which carries 48 ± 11 Tg DIC/year into the gyre. Though often overlooked, these freshwater displacement effects are of leading order in the Weddell Gyre carbon budget in the state estimate and in regrouped box‐inversion estimates, with implications for evaluating basin‐scale carbon transport.more » « less
-
Abstract. The annual sea ice freeze–thaw cycle plays a crucial role in theArctic atmosphere—ice–ocean system, regulating the seasonal energy balanceof sea ice and the underlying upper-ocean. Previous studies of the sea icefreeze–thaw cycle were often based on limited accessible in situ or easilyavailable remotely sensed observations of the surface. To better understandthe responses of the sea ice to climate change and its coupling to the upperocean, we combine measurements of the ice surface and bottom usingmultisource data to investigate the temporal and spatial variations in thefreeze–thaw cycle of Arctic sea ice. Observations by 69 sea ice mass balancebuoys (IMBs) collected from 2001 to 2018 revealed that the average ice basalmelt onset in the Beaufort Gyre occurred on 23 May (±6 d),approximately 17 d earlier than the surface melt onset. The average icebasal melt onset in the central Arctic Ocean occurred on 17 June (±9 d), which was comparable with the surface melt onset. This difference wasmainly attributed to the distinct seasonal variations of oceanic heatavailable to sea ice melt between the two regions. The overall average onsetof basal ice growth of the pan Arctic Ocean occurred on 14 November (±21 d), lagging approximately 3 months behind the surface freezeonset. This temporal delay was caused by a combination of cooling the seaice, the ocean mixed layer, and the ocean subsurface layer, as well as thethermal buffering of snow atop the ice. In the Beaufort Gyre region, both(Lagrangian) IMB observations (2001–2018) and (Eulerian) moored upward-looking sonar (ULS) observations (2003–2018) revealed a trend towardsearlier basal melt onset, mainly linked to the earlier warming of thesurface ocean. A trend towards earlier onset of basal ice growth was alsoidentified from the IMB observations (multiyear ice), which we attributed tothe overall reduction of ice thickness. In contrast, a trend towards delayedonset of basal ice growth was identified from the ULS observations, whichwas explained by the fact that the ice cover melted almost entirely by theend of summer in recent years.more » « less
An official website of the United States government

