skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tree-level superstring amplitudes: the Neveu-Schwarz sector
A<sc>bstract</sc> We present a complete computation of superstring scattering amplitudes at tree level, for the case of Neveu-Schwarz insertions. Mathematically, this is to say that we determine explicitly the superstring measure on the moduli space$$ {\mathcal{M}}_{0,n,0} $$ M 0 , n , 0 of super Riemann surfaces of genus zero withn≥ 3 Neveu-Schwarz punctures. While, of course, an expression for the measure was previously known, we do this from first principles, using the canonically defined super Mumford isomorphism [1]. We thus determine the scattering amplitudes, explicitly in the global coordinates on$$ {\mathcal{M}}_{0,n,0} $$ M 0 , n , 0 , without the need for picture changing operators or ghosts, and are also able to determine canonically the value of the coupling constant. Our computation should be viewed as a step towards performing similar analysis on$$ {\mathcal{M}}_{0,0,n} $$ M 0 , 0 , n , to derive explicit tree-level scattering amplitudes with Ramond insertions.  more » « less
Award ID(s):
2101631
PAR ID:
10588998
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
9
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The amplituhedron is a mathematical object which was introduced to provide a geometric origin of scattering amplitudes in$$\mathcal {N}=4$$ N = 4 super Yang–Mills theory. It generalizescyclic polytopesand thepositive Grassmannianand has a very rich combinatorics with connections to cluster algebras. In this article, we provide a series of results about tiles and tilings of the$$m=4$$ m = 4 amplituhedron. Firstly, we provide a full characterization of facets of BCFW tiles in terms of cluster variables for$$\text{ Gr}_{4,n}$$ Gr 4 , n . Secondly, we exhibit a tiling of the$$m=4$$ m = 4 amplituhedron which involves a tile which does not come from the BCFW recurrence—thespuriontile, which also satisfies all cluster properties. Finally, strengthening the connection with cluster algebras, we show that each standard BCFW tile is the positive part of a cluster variety, which allows us to compute the canonical form of each such tile explicitly in terms of cluster variables for$$\text{ Gr}_{4,n}$$ Gr 4 , n . This paper is a companion to our previous paper “Cluster algebras and tilings for the$$m=4$$ m = 4 amplituhedron.” 
    more » « less
  2. Abstract Let$$\phi $$ ϕ be a positive map from the$$n\times n$$ n × n matrices$$\mathcal {M}_n$$ M n to the$$m\times m$$ m × m matrices$$\mathcal {M}_m$$ M m . It is known that$$\phi $$ ϕ is 2-positive if and only if for all$$K\in \mathcal {M}_n$$ K M n and all strictly positive$$X\in \mathcal {M}_n$$ X M n ,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ ϕ ( K X - 1 K ) ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) . This inequality is not generally true if$$\phi $$ ϕ is merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$ Tr [ ϕ ( K X - 1 K ) ] Tr [ ϕ ( K ) ϕ ( X ) - 1 ϕ ( K ) ] holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results. 
    more » « less
  3. Abstract While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in$$\mathbb {R}^n$$ R n . In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension$$n=1$$ n = 1 . In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition$$(\mathcal {G},\beta )$$ ( G , β ) and nonempty sets$$A_1,\dots ,A_m\subseteq \mathbb {R}$$ A 1 , , A m R , equality holds iff for each$$S\in \mathcal {G}$$ S G , the set$$\sum _{i\in S}A_i$$ i S A i is an interval. In the case of dimension$$n\ge 2$$ n 2 we will show that equality can hold if and only if the set$$\sum _{i=1}^{m}A_i$$ i = 1 m A i has measure 0. 
    more » « less
  4. A<sc>bstract</sc> A comprehensive study of the local and nonlocal amplitudes contributing to the decayB0→K*0(→K+π+μis performed by analysing the phase-space distribution of the decay products. The analysis is based onppcollision data corresponding to an integrated luminosity of 8.4 fb−1collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient$$ {\mathcal{C}}_9 $$ C 9 , responsible for vector dimuon currents, exhibits a 2.1σdeviation from the Standard Model expectation. The Wilson Coefficients$$ {\mathcal{C}}_{10} $$ C 10 ,$$ {\mathcal{C}}_9^{\prime } $$ C 9 and$$ {\mathcal{C}}_{10}^{\prime } $$ C 10 are all in better agreement than$$ {\mathcal{C}}_9 $$ C 9 with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions fromB0→ K*0+τ→ μ+μ] rescattering, resulting in the first direct measurement of thebsττvector effective-coupling$$ {\mathcal{C}}_{9\tau } $$ C 9 τ
    more » « less
  5. Abstract Let$$(h_I)$$ ( h I ) denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ I D , the set of dyadic intervals and$$h_I\otimes h_J$$ h I h J denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ( s , t ) h I ( s ) h J ( t ) ,$$I,J\in \mathcal {D}$$ I , J D . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ V ( δ 2 ) of$$h_I\otimes h_J$$ h I h J ,$$I,J\in \mathcal {D}$$ I , J D . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ L p [ 0 , 1 ] or the Hardy spaces$$H^p[0,1]$$ H p [ 0 , 1 ] ,$$1\le p < \infty $$ 1 p < . We say that$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ D ( h I h J ) = d I , J h I h J , where$$d_{I,J}\in \mathbb {R}$$ d I , J R , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ C : V ( δ 2 ) V ( δ 2 ) given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ C h I h J = h I h J if$$|I|\le |J|$$ | I | | J | , and$$\mathcal {C} h_I\otimes h_J = 0$$ C h I h J = 0 if$$|I| > |J|$$ | I | > | J | , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ D : X ( Y ) X ( Y ) , there exist$$\lambda ,\mu \in \mathbb {R}$$ λ , μ R such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ λ C + μ ( Id - C ) approximately 1-projectionally factors through D , i.e., for all$$\eta > 0$$ η > 0 , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ Id ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ A · B = 1 and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ λ C + μ ( Id - C ) - A D B < η . Additionally, if$$\mathcal {C}$$ C is unbounded onX(Y), then$$\lambda = \mu $$ λ = μ and then$${{\,\textrm{Id}\,}}$$ Id either factors throughDor$${{\,\textrm{Id}\,}}-D$$ Id - D
    more » « less