skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 23, 2026

Title: Work in Progress: Developing an AI-Enhanced Immersive Curriculum for Environmental Robotics
A convergence of technology advancements including spatial computing, augmented reality (AR), and artificial intelligence (AI) can now support the personalization of learning environments and dynamically respond to learner performance data with personalized feedback. Augmented Learning for Environmental Robotics (ALERT), leverages advances in technology to research, develop, and test an augmented reality-enhanced (AR) curriculum for learning how to develop and use robotic environmental monitoring tools for collecting data on environmentally sensitive construction sites. With this project, our research team aims to develop the ALERT curriculum as an immersive learning environment, implement automation processes that dynamically adjust to learner performance, and address a pressing problem in the construction sector with recent advances in small robotics and remote sensing.  more » « less
Award ID(s):
2315647
PAR ID:
10589959
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
IEEE
Date Published:
Edition / Version:
1
ISBN:
979-8-3315-4278-8
Page Range / eLocation ID:
1 to 4
Subject(s) / Keyword(s):
Robotics curriculum, environmental robotics, augmented reality, immersive learning, artificial intelligence
Format(s):
Medium: X
Location:
Montevideo, Uruguay
Sponsoring Org:
National Science Foundation
More Like this
  1. Ahram, Tareq; Karwowski, Waldemar (Ed.)
    The increasing environmental concerns call for more sophisticated and integrated educational methods. For sustainable outcomes, understanding and navigating complex environmental factors is essential. By imparting knowledge about environmental data and its applications, students can be better prepared to address environmental issues.The Augmented Learning for Environmental Robotics Technologies (ALERT) program introduces an educational method using augmented reality (AR) and artificial intelligence (AI). It provides students, particularly those in architecture, engineering, and construction (AEC), with an immersive learning experience focused on environmental data and robotics. Considering the significant environmental footprint of the AEC sector—emanating from energy-intensive buildings, roads, and infrastructures—the ALERT initiative strives to instill a comprehensive understanding of environmental data collection and visualization. This is done with the aim of promoting data-centric design and construction for a more eco-friendly built environment.In the ALERT program, AR is employed to fashion an augmented learning space where students can engage with both real-time and past environmental data. They learn to set up environmental sensors, collect data, and visualize it to unearth hidden trends and connections. Additionally, AI ensures a tailored learning journey for each student, offering optimal challenges and support. This innovative blend of AR and AI not only offers an enriching learning experience but also prepares AEC students to be at the forefront of transformative shifts, especially those influenced by advancements like robotic automation, fostering a profound understanding of environmental data.This paper outlines the preliminary stages of the ALERT project, detailing its foundational research. Topics include the educational theories guiding the creation of a groundbreaking Intelligent Learning System (ILS) and curriculum, as well as the projected impact of the program. ALERT emerges as a promising venture, potentially empowering students with the expertise to reduce the ecological footprint of infrastructure, paving the way for a greener future. 
    more » « less
  2. This project addresses the urgent need for inclusive and scalable robotics training in architecture, engineering, and construction (AEC) through the integration of artificial intelligence (AI) and extended reality (XR) technologies. In collaboration with three Minority Serving Institutions (Florida International University, Arizona State University, and University of Hawai‘i at Mānoa), we developed and tested immersive, adaptive learning environments that personalize robotics education for diverse student populations. These efforts include a VR-based curriculum for industrial robotics, an AR curriculum for environmental sensing technologies, and an overarching Robotics Academy framework that promotes open knowledge exchange and workforce connectivity. By combining real-time performance analytics, natural language processing, and biometric inputs, our systems support individualized learning paths and help mitigate algorithmic bias. This research advances equitable access to robotics education and provides a replicable model for technology-driven workforce development in the AEC sector. Ongoing evaluation demonstrates improved learner engagement, accessibility, and cross-platform skill transferability. 
    more » « less
  3. Yan, C; Chai, H; Sun, T; Yuan, PF (Ed.)
    Abstract. The building industry is facing environmental, technological, and economic challenges, placing significant pressure on preparing the workforce for Industry 4.0 needs. The fields of Architecture, Engineering, and Construction (AEC) are being reshaped by robotics technologies which demand new skills and creating disruptive change to job markets. Addressing the learning needs of AEC students, professionals, and industry workers is critical to ensuring the competitiveness of the future workforce. In recent years advancements in Information Technology, Augmented Reality (AR), Virtual Reality (VR), and Artificial Intelligence (AI) have led to new research and theories on virtual learning environments. In the AEC fields researchers are beginning to rethink current robotics training to counteract costly and resource-intensive in-person learning. However, much of this work has been focused on simulation physics and has yet to adequately address how to engage AEC learners with different learning abilities, styles, and diverse backgrounds.This paper presents the advantages and difficulties associated with using new technologies to develop virtual reality (VR) learning games for robotics. It describes an ongoing project for creating performance driven curriculum. Drawing on the Constructivist Learning Theory, the affordances of Adaptive Learning Systems, and data collection methods from the VR game environment, the project provides a customized and performance-oriented approach to carrying out practical robotics tasks in real-world scenarios. 
    more » « less
  4. In today’s world, augmented reality and virtual reality (AR/VR) technologies have become more accessible to the public than ever. This brings the possibility of immersive learning to the forefront of education for future generations. However, there is still much to discover and improve in using these technologies to analyze and understand learning. This paper explores the utilization of data captured through AR/VR headsets during an immersive training program for industrial robotics. This includes data on time spent, eye gaze, and hand movement during a range of activities to track a learner’s understanding of the content and intelligently estimate learner confidence within these environments using deep learning. Leveraging a dataset that comprises responses and confidence levels from 10 individuals across 35 questions, we aim to improve the uses and applicability of confidence estimation. We explore the possibility of training a model using learners’ data to dynamically fine-tune lessons and activities for each individual, thereby improving performance. We demonstrate that a pre-trained compact LSTM classification model can be fine-tuned with relatively small data, for enhanced performance on an individual basis for better personalized learning. 
    more » « less
  5. null (Ed.)
    Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys. 
    more » « less