Abstract Sustainable agricultural water systems are critical to ensure prosperous agricultural production, secure water resources, and support healthy ecosystems that sustain livelihoods and well-being. Many growing regions are using water unsustainably, leading to groundwater and streamflow depletion and polluted water bodies. Often, this is driven by global consumer demands, with environmental and social impacts occurring in regions far from where the crop is ultimately consumed. This letter defines sustainable agricultural water limits, both for quantity and quality, tying them to the impacts of agricultural water use, such as impacts on ecosystems, economies, human health, and other farmers. Imposing these limits will have a range of both positive and negative impacts on agricultural production, food prices, ecosystems, and health. Pathways forward exist and are proposed based on existing studies, showing the gains that can be made from the farm to global scale to ensure sustainable water systems while sustaining agricultural production. 
                        more » 
                        « less   
                    
                            
                            Environmental impacts of genetically modified crops
                        
                    
    
            Genetically modified (GM) crops have been adopted by some of the world’s leading agricultural nations, but the full extent of their environmental impact remains largely unknown. Although concerns regarding the direct environmental effects of GM crops have declined, GM crops have led to indirect changes in agricultural practices, including pesticide use, agricultural expansion, and cropping patterns, with profound environmental implications. Recent studies paint a nuanced picture of these environmental impacts, with mixed effects of GM crop adoption on biodiversity, deforestation, and human health that vary with the GM trait and geographic scale. New GM or gene-edited crops with different traits would likely have different environmental and human health impacts. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2042526
- PAR ID:
- 10589968
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Science
- Volume:
- 385
- Issue:
- 6712
- ISSN:
- 0036-8075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The direct impacts of climate change on crop yields and human health are individually well-studied, but the interaction between the two have received little attention. Here we analyze the consequences of global warming for agricultural workers and the crops they cultivate using a global economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on humans’ ability to work. Based on two metrics of heat stress and two labor functions, combined with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also expanding the labor impacts to highlight the potential importance on non-staple crops. We find, worldwide, labor and yield impacts within staple grains are equally important at +3∘C warming, relative to the 1986–2005 baseline. Furthermore, the widely overlooked labor impacts are dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those regions, heat stress with 3∘C global warming could reduce labor capacity in agriculture by 30%–50%, increasing food prices and requiring much higher levels of employment in the farm sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices rising by 5%, relative to baseline.more » « less
- 
            Rising global populations have amplified food scarcity and ushered in the development of genetically modified (GM) crops containing small interference RNAs (siRNAs) that control gene expression to overcome these challenges. The use of RNA interference (RNAi) in agriculture remains controversial due to uncertainty regarding the unintended release of genetic material and downstream nontarget effects, which have not been assessed in environmental bacteria to date. To evaluate the impacts of siRNAs used in agriculture on environmental bacteria, this study assessed microbial growth and viability as well as transcription activity with and without the presence of environmental stressors. Results showed a statistically significant reduction in growth capacity and maximum biomass achieved when bacteria are exposed to siRNAs alone and with additional external stress (p < 0.05). Further transcriptomic analysis demonstrated that nutrient cycling gene activities were found to be consistently and significantly altered following siRNA exposure, particularly among carbon (xylA, FBPase, limEH, Chitinase, rgl, rgh, rgaE, mannanase, ara) and nitrogen (ureC, nasA, narB, narG, nirK) cycling genes (p < 0.05). Decreases in carbon cycling gene transcription profiles were generally significantly enhanced when siRNA exposure was coupled with nutrient or antimicrobial stress. Collectively, findings suggest that certain conditions facilitate the uptake of siRNAs from their surrounding environments that can negatively affect bacterial growth and gene expression activity, with uncertain downstream impacts on ecosystem homeostasis.more » « less
- 
            Abstract Increases in population exposure to humid heat extremes in agriculturally-dependent areas of the world highlights the importance of understanding how the location and timing of humid heat extremes intersects with labor-intensive agricultural activities. Agricultural workers are acutely vulnerable to heat-related health and productivity impacts as a result of the outdoor and physical nature of their work and by compounding socio-economic factors. Here, we identify the regions, crops, and seasons when agricultural workers experience the highest hazard from extreme humid heat. Using daily maximum wet-bulb temperature data, and region-specific agricultural calendars and cropland area for 12 crops, we quantify the number of extreme humid heat days during the planting and harvesting seasons for each crop between 1979–2019. We find that rice, an extremely labor-intensive crop, and maize croplands experienced the greatest exposure to dangerous humid heat (integrating cropland area exposed to >27 °C wet-bulb temperatures), with 2001–2019 mean rice and maize cropland exposure increasing 1.8 and 1.9 times the 1979–2000 mean exposure, respectively. Crops in socio-economically vulnerable regions, including Southeast Asia, equatorial South America, the Indo-Gangetic Basin, coastal Mexico, and the northern coast of the Gulf of Guinea, experience the most frequent exposure to these extremes, in certain areas exceeding 60 extreme humid heat days per year when crops are being cultivated. They also experience higher trends relative to other world regions, with certain areas exceeding a 15 day per decade increase in extreme humid heat days. Our crop and location-specific analysis of extreme humid heat hazards during labor-intensive agricultural seasons can inform the design of policies and efforts to reduce the adverse health and productivity impacts on this vulnerable population that is crucial to the global food system.more » « less
- 
            null (Ed.)Future air quality will be driven by changes in air pollutant emissions, but also changes in climate. Here, we review the recent literature on future air quality scenarios and projected changes in effects on human health, crops and ecosystems. While there is overlap in the scenarios and models used for future projections of air quality and climate effects on human health and crops, similar efforts have not been widely conducted for ecosystems. Few studies have conducted joint assessments across more than one sector. Improvements in future air quality effects on human health are seen in emission reduction scenarios that are more ambitious than current legislation. Larger impacts result from changing particulate matter (PM) abundances than ozone burdens. Future global health burdens are dominated by changes in the Asian region. Expected future reductions in ozone outside of Asia will allow for increased crop production. Reductions in PM, although associated with much higher uncertainty, could offset some of this benefit. The responses of ecosystems to air pollution and climate change are long-term, complex, and interactive, and vary widely across biomes and over space and time. Air quality and climate policy should be linked or at least considered holistically, and managed as a multi-media problem. This article is part of a discussion meeting issue ‘Air quality, past present and future’.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    