We propose and analyze deterministic protocols to generate qudit photonic graph states from quantum emitters. We show that our approach can be applied to generate any qudit graph state and we exemplify it by constructing protocols to generate one- and two-dimensional qudit cluster states, absolutely maximally entangled states, and logical states of quantum error-correcting codes. Some of these protocols make use of time-delayed feedback, while others do not. The only additional resource requirement compared to the qubit case is the ability to control multilevel emitters. These results significantly broaden the range of multiphoton entangled states that can be produced deterministically from quantum emitters. Published by the American Physical Society2024
more »
« less
This content will become publicly available on April 1, 2026
Stabilizing steady-state properties of open quantum systems with parameter engineering
Realistic quantum systems are affected by environmental loss, which is often seen as detrimental for applications in quantum technologies. Alternatively, weak coupling to an environment can aid in stabilizing highly entangled and mixed states, but determining optimal system-environment parameters can be challenging. Here, we describe a technique to optimize parameters for generating desired nonequilibrium steady states (NESSs) in driven-dissipative quantum systems governed by the Lindblad equation. We apply this approach to predict highly entangled and mixed NESSs in Ising, Kitaev, and Dicke models in several quantum phases. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 2011401
- PAR ID:
- 10590003
- Publisher / Repository:
- Phys. Rev. Res.
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a simple and effective method to create highly entangled spin states on a faster timescale than that of the commonly employed one-axis twisting (OAT) model. We demonstrate that by periodically driving the Dicke Hamiltonian at a resonance frequency, the system effectively becomes a two-axis countertwisting Hamiltonian, which is known to quickly create Heisenberg limit scaled entangled states. For these states we show that simple quadrature measurements can saturate the ultimate precision limit for parameter estimation determined by the quantum Cramér-Rao bound. An example experimental realization of the periodically driven scheme is discussed with the potential to quickly generate momentum entanglement in a recently described experimental vertical cavity system. We analyze effects of collective dissipation in this vertical cavity system and find that our squeezing protocol can be more robust than the previous realization of OAT. Published by the American Physical Society2024more » « less
-
Preparing long-range entangled states poses significant challenges for near-term quantum devices. It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth. Here, we systematically explore the structure of states that can be prepared using constant-depth local circuits and a single MF round. Using the framework of tensor networks, the preparability under MF translates to tensor symmetries. We detail the structure of matrix-product states (MPSs) and projected entangled-pair states (PEPSs) that can be prepared using MF, revealing the coexistence of Clifford-like properties and magic. In one dimension, we show that states with Abelian-symmetry-protected topological order are a restricted class of MF-preparable states. In two dimensions, we parametrize a subset of states with Abelian topological order that are MF preparable. Finally, we discuss the analogous implementation of operators via MF, providing a structural theorem that connects to the well-known Clifford teleportation. Published by the American Physical Society2024more » « less
-
We study quantum many-body mixed states with a symmetry from the perspective of , i.e., whether a mixed state can be expressed as an ensemble of short-range-entangled symmetric pure states. We provide evidence for “symmetry-enforced separability transitions” in a variety of states, where in one regime the mixed state is expressible as a convex sum of symmetric short-range-entangled pure states, while in the other regime, such a representation is not feasible. We first discuss the Gibbs state of Hamiltonians that exhibit spontaneous breaking of a discrete symmetry, and argue that the associated thermal phase transition can be thought of as a symmetry-enforced separability transition. Next we study cluster states in various dimensions subjected to local decoherence, and identify several distinct mixed-state phases and associated separability phase transitions, which also provides an alternative perspective on recently discussed “average symmetry-protected topological order.” We also study decohered superconductors, and find that if the decoherence breaks the fermion parity explicitly, then the resulting mixed state can be expressed as a convex sum of nonchiral states, while a fermion parity–preserving decoherence results in a phase transition at a nonzero threshold that corresponds to spontaneous breaking of fermion parity. Finally, we briefly discuss systems that satisfy the no low-energy trivial state property, such as the recently discovered good low-density parity-check codes, and argue that the Gibbs state of such systems exhibits a temperature-tuned separability transition. Published by the American Physical Society2024more » « less
-
We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters. Published by the American Physical Society2024more » « less
An official website of the United States government
