The viscous fingering instability, which forms when a less-viscous fluid invades a more-viscous one within a confined geometry, is an iconic system for studying pattern formation. For both miscible and immiscible fluid pairs the growth dynamics change after the initial instability onset and the global structures, typical of late-time growth, are governed by the viscosity ratio. Here we introduce an experimental technique to measure flow throughout the inner and outer fluids. This probes the existence of a new length scale associated with the local pressure gradients around the interface and allows us to compare our results to the predictions of a previously proposed model for late-time finger growth. Published by the American Physical Society2024
more »
« less
Viscous tweezers: Controlling particles with viscosity
Control of particle motion is generally achieved by applying an external field that acts directly on each particle. Here, we propose a global way to manipulate the motion of a particle by dynamically changing the properties of the fluid in which it is immersed. We exemplify this principle by considering a small particle sinking in an anisotropic fluid whose viscosity depends on the shear axis. In the Stokes regime, the motion of an immersed object is fully determined by the viscosity of the fluid through the mobility matrix, which we explicitly compute for a pushpin-shaped particle. Rather than falling upright under the force of gravity, as in an isotropic fluid, the pushpin tilts to the side, sedimenting at an angle determined by the viscosity anisotropy axis. By changing this axis, we demonstrate control over the pushpin orientation as it sinks, even in the presence of noise, using a closed feedback loop. This strategy to control particle motion, that we dub viscous tweezers, could be experimentally realized in systems ranging from polyatomic fluids under external fields to chiral active fluids of spinning particles by suitably changing their direction of global alignment or anisotropy. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2011854
- PAR ID:
- 10590209
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review Research
- Volume:
- 6
- Issue:
- 4
- ISSN:
- 2643-1564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metamaterials are composite structures whose extraordinary properties arise from a mesoscale organization of their constituents. Here, we introduce a different material class—viscosity metafluids. Specifically, we demonstrate that we can rapidly drive large viscosity oscillations in shear-thickened fluids using acoustic perturbations with kHz to MHz frequencies. Because the timescale for these oscillations can be orders of magnitude smaller than the timescales associated with the global material flow, we can construct metafluids whose resulting time-averaged viscosity is a composite of the thickened, high-viscosity and dethickened, low-viscosity states. We show that viscosity metafluids can be used to engineer a variety of unique properties including zero, infinite, and negative viscosities. The high degree of control over the resulting viscosity, the ease with which they can be accessed, and the variety of exotic properties achievable make viscosity metafluids attractive for uses in technologies ranging from coatings to cloaking to 3D printing. Published by the American Physical Society2024more » « less
-
This paper is associated with a poster winner of a 2023 American Physical Society's Division of Fluid Dynamics (DFD) Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available online at the Gallery of Fluid Motion, . Published by the American Physical Society2024more » « less
-
We investigate the steady state of an ellipsoidal active nematic shell using experiments and numerical simulations. We create the shells by coating microsized ellipsoidal droplets with a protein-based active cytoskeletal gel, thus obtaining ellipsoidal core-shell structures. This system provides the appropriate conditions of confinement and geometry to investigate the impact of nonuniform curvature on an orderly active nematic fluid that features the minimum number of defects required by topology. We identify new time-dependent states where topological defects periodically oscillate between translational and rotational regimes, resulting in the spontaneous emergence of chirality. Our simulations of active nematohydrodynamics demonstrate that, beyond topology and activity, the dynamics of the active material are profoundly influenced by the local curvature and viscous anisotropy of the underlying droplet, as well as by external hydrodynamic forces stemming from the self-sustained rotational motion of defects. These results illustrate how the incorporation of curvature gradients into active nematic shells orchestrates remarkable spatiotemporal patterns, offering new insights into biological processes and providing compelling prospects for designing bioinspired micromachines. Published by the American Physical Society2024more » « less
-
Superclimbing dynamics is the signature feature of transverse quantum fluids describing wide superfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. Using Lagrangian formalism, we show how the essence of the superclimb phenomenon—dynamic conjugation of the fields of the superfluid phase and geometric shape—clearly manifests itself via characteristic modes of autonomous motion of the insulating domain (“droplet”) with superclimbing edges. In the translation invariant case and in the absence of supercurrent along the edge, the droplet demonstrates ballistic motion with the velocity-dependent shape and zero bulk currents. In an isotropic trapping potential, the droplet features a doubly degenerate sloshing mode. The period of the ground-state evolution of the superfluid phase (dictating the frequency of the AC Josephson effect) is sensitive to the geometry of the droplet. The supercurrent along the edge dramatically changes the droplet dynamics: The motion acquires features resembling that of a two-dimensional charged particle interacting with a perpendicular magnetic field. In a linear external potential (uniform force field), the state with a supercurrent demonstrates a spectacular gyroscopic effect—uniform motion in the perpendicular to the force direction. Published by the American Physical Society2024more » « less
An official website of the United States government

