This content will become publicly available on November 14, 2025
Organo-disulfide-based particles enable controlled stimulus-triggered cleaning of electrode surfaces
Stimuli-responsive RAPs with disulfide bonds enablein-situelectrode cleaningviaUV or electrochemical stimuli, effectively removing fouling and restoring electrode performance in electrochemical flow cells.
more »
« less
- Award ID(s):
- 2011854
- PAR ID:
- 10590278
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- RSC Applied Polymers
- Volume:
- 2
- Issue:
- 6
- ISSN:
- 2755-371X
- Page Range / eLocation ID:
- 1113 to 1123
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Flow cell electrodes are typically composed of porous carbon materials, such as papers, felts, and cloths. However, their random architecture hinders the fundamental characterization of electrode structure‐performance relationships during in situ operation of porous electrochemical flow systems. This work describes a “print‐and‐plate” method that combines direct ink writing of micro‐periodic lattices with a two‐step metal plating process that converts them into highly conductive (sheet resistance 40 mΩ sq−1) electrodes. Theiroperandoperformance is assessed in an anthraquinone disulfonic acid half‐cell using widefield electrochemical fluorescence microscopy, where output current and fluorescence intensity are in excellent agreement. The pressure drop associated with flow through three electrode designs is determined via simulations from which the most efficient design is identified and manufactured via print‐and‐plate. Confocal fluorescence microscopy is then used to create a 3D map of the state of charge (SOC) inside this print‐and‐plate electrode. The experimental state of the charge map is in good agreement with computational predictions. The rapid design, simulation, and fabrication of print‐and‐plate electrodes enable fundamental investigations of how architected porosity affects electrochemical performance under flow.more » « less
-
During the growth of a polycrystalline ice lattice, microorganisms partition into veins, forming an ice vein network highly concentrated in salts and microbial cells. We used microfabricated electrochemical impedance spectroscopy (EIS) sensors to determine the effect of microorganisms on the electrochemical properties of ice. Solutions analyzed consisted of a 176μS cm−1conductivity solution, fluorescent beads, andEscherichia coliHB101-GFP to model biotic organisms. Impedance spectroscopy data were collected at −10 °C, −20 °C, and −25 °C within either ice veins or ice grains (i.e., no veins) spanning the sensors. After freezing, the fluorescent beads andE. coliwere partitioned into the ice veins. The corresponding impedance data were discernibly different in the presence of ice veins and microbial impurities. The presence of microbial cells in ice veins was evident by decreased electrical characteristics (electrode polarization between electrode and ice matrix) relative to solid ice grains. Further, this electrochemical behavior was reversed in all bead-doped solutions, indicating that microbial processes influence sensor response. Linear mixed-effects models empirically corroborated the differences in polarization associated with the presence and absence of microbial cells in ice. We show that EIS has the potential to detect microbes in ice and differentiate between veins and solid grains.more » « less
-
Elastin-like polymers (ELPs) are frequently used in a variety of bioengineering applications because of their stimuli-responsive properties. Above their transition temperature, ELPs will adopt different structures that promote intra- and intermolecular hydrophobic contacts to minimize unfavorable interactions with an aqueous environment. We electrochemically characterize the stimuli-responsive behavior of surface-immobilized ELPs corresponding to two proposed states: extended and collapsed. In the extended state the ELPs are more solvated. In the collapsed state, triggered by introducing an environmental stimulus, non-polar intramolecular contacts within ELPs are favored, resulting in quantifiable morphological changes on the surface characterized using electrochemical impedance spectroscopy (EIS). Charge transfer resistance, a component of impedance, was shown to increase after exposing an ELP modified electrode to a high salt concentration environment (3.0 M NaCl). An increase in charge transfer resistance indicates an increase in the insulating layer on the electrode surface consistent with the proposed mechanism of collapse, as the ELPs have undergone morphological changes to hinder the kinetics of the redox couple exchange. Further characterization of the surface-immobilized ELPs showed a reproducible surface modification, as well as reversibility and tunability of the stimuli-response.more » « less
-
Abstract A major challenge in the pursuit of higher‐energy‐density lithium batteries for carbon‐neutral‐mobility is electrolyte compatibility with a lithium metal electrode. This study demonstrates the robust and stable nature of acloso‐borate based gel polymer electrolyte (GPE), which enables outstanding electrochemical stability and capacity retention upon extensive cycling. The GPE developed herein has an ionic conductivity of 7.3 × 10−4 S cm−2at room temperature and stability over a wide temperature range from −35 to 80 °C with a high lithium transference number ( = 0.51). Multinuclear nuclear magnetic resonance and Fourier transform infrared are used to understand the solvation environment and interaction between the GPE components. Density functional theory calculations are leveraged to gain additional insight into the coordination environment and support spectroscopic interpretations. The GPE is also established to be a suitable electrolyte for extended cycling with four different active electrode materials when paired with a lithium metal electrode. The GPE can also be incorporated into a flexible battery that is capable of being cut and still functional. The incorporation of acloso‐borate into a gel polymer matrix represents a new direction for enhancing the electrochemical and physical properties of this class of materials.more » « less
An official website of the United States government
