skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In Situ Near Crack Tip pH Measurements to Confirm Alkaline Crack Conditions Causing Crack Arrest in Cathodically Polarized AA5456-H116
In situ crack tip pH measurements for corrosion fatigue (CF) cracks in sensitized AA5456-H116 loaded under low loading frequencies show that cathodic polarization can arrest actively growing stress corrosion cracking (SCC) and CF cracks and produce a local alkaline crack tip pH. A method for measuring crack tip pH in situ was developed. For AA5456-H116 under a single level of high sensitization, CF experiments while loading in the Paris regime at a loading frequency of 0.1 Hz were conducted under freely corroding conditions and a cathodic polarization of −1.3 VSCE. Results show that under freely corroding conditions the crack actively grows, and the crack tip pH is slightly acidic, while at −1.3 VSCE an alkaline crack tip develops with a pH of 10 to 12. The findings of this study support the earlier published hypothesis that crack arrest of SCC and low loading frequency CF cracks is due to corrosion-induced blunting after the development of highly alkaline conditions that cause corrosion of the crack tip region blunting and halting the crack.  more » « less
Award ID(s):
1943870
PAR ID:
10590549
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AMPP
Date Published:
Journal Name:
Corrosion
Volume:
80
Issue:
8
ISSN:
0010-9312
Page Range / eLocation ID:
828 to 835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At low fatigue loading frequencies of 0.1 Hz, the near crack tip pH of AA2024-T8 and AA7075-T6 diverge strongly, whereas at higher loading frequencies of 10 Hz they approach the bulk solution pH. In-situ micro pH probes positioned in line with crack plane show AA7075-T6 develops acidic crack tip pH ~3.5, whereas AA2024-T8 becomes strongly alkaline with pH ~11 at 0.1 Hz. This pH difference aligns with corrosion fatigue (CF) behavior where AA7075-T6 exhibits higher crack growth rates (da/ dN) compared to air while AA2024-T8 exhibits da/dN near that of lab air. As frequency increases, both alloys display pH converging toward the neutral bulk pH of 0.6MNaCl and both da/dN higher than lab air. Results are evaluated against a hypothesis in the literature suggesting alloy-specific crack wake cathodic reactions may set local pH and thereby influence CF kinetics in AA2xxx and AA7xxx Al alloys. Other possible hypotheses are evaluated. 
    more » « less
  2. Abstract The atomic‐scale cracking mechanism in clay is vital in discovering the cracking mechanism of clay at the continuum scale in that clay is a nanomaterial. In this article, we investigate mechanisms of modes I and II crack propagations in pyrophyllite and Ca‐montmorillonite with water adsorption through reactive molecular dynamics (MD) with a bond‐order force field. Clay water adsorption is considered by adding water molecules to the clay surface. During the equilibration stage, water adsorption could cause bending deformation of the predefined edge crack region. The relatively small orientating angle of water molecules indicates the formation of hydrogen bonds in the crack propagation process. The peak number density of adsorbed water decreases with the increasing strains. The atomistic structure evolution of the crack tip under loading is analyzed to interpret the nanoscale crack propagation mechanism. The numerical results show that the crack tip first gets blunted with a significant increase in the radius of the curvature of the crack tip and a slight change in crack length. The crack tip blunting is studied by tracking the crack tip opening distance and O–Si–O angle in the tetrahedral Si–O cell in modes I and II cracks. We compare bond‐breaking behaviors between Al–O and Si–O. It is found that Si–O bond breaking is primarily responsible for crack propagation. The critical stress intensity factor and critical energy release rate are determined from MD simulation results. 
    more » « less
  3. Thermoplastic pipes are widely used in the semiconductor industry, where they are used to drain highly corrosive liquid waste. When exposed to oxidizing environments, thermoplastic pipes can undergo stress-corrosion cracking (SCC), potentially causing them to fail prematurely in the absence of appropriate design and maintenance guidelines. Here, the stress-corrosion cracking behavior of polypropylene, commonly used in waste drainage pipes for dilute sulfuric acid/hydrogen peroxide mixtures (Piranha solutions), is investigated as a function of applied energy release rate. Sub-critical crack growth experiments are performed with compact tension specimens in sulfuric acid/hydrogen peroxide mixtures using a custom constant-force loading system to evaluate the effects of temperature and chemical composition on SCC crack growth. The activation energy for the SCC process is 99.7 ± 15.3 kJ/mol, and the crack growth rate depends sensitively on the concentrations of sulfuric acid and hydrogen peroxide in the mixture. We propose a practical guideline to calculate the service life of polypropylene pipes in Piranha solutions using crack velocity curves and show that accidental exposure to a concentrated Piranha solution can significantly reduce service life. 
    more » « less
  4. Degradable polymers are under intense development for sustainability and healthcare. Evidence has accumulated that the chemical reaction that decomposes a polymer an also grow a crack. Even under a small load, the crack speed can be orders of magnitude higher than the overall rate of degradation, leading to premature failure. Here, we demonstrate that a crack slows down markedly in a composite of two degradable materials. In a homogeneous degradable material, the stress concentrates at the crack tip, so that a relatively small applied stretch induces a high stress and a high rate of reaction. The fracture behavior of a composite that consists of two degradable materials, a stiff material for the fibers and a compliant material for the matrix, with strong adhesion between both, is different: The soft matrix blunts the crack and distributes the stresses at the crack tip over a long length of the fibers. The same rate of reaction requires a larger applied stretch. This stress de-concentration retards crack growth in the composite. We demonstrate this concept using a composite made of stiff polydimethylsiloxane (PDMS) fibers in a soft PDMS matrix. In the presence of water molecules in the environment, siloxane bonds in the PDMS hydrolyze, causing hydrolytic crack growth. We show that a hydrolytic crack grows much more slowly in a PDMS composite than in homogeneous PDMS, and may even arrest in the composite. It is hoped that this concept will contribute to the development of degradable materials that resist premature failure. 
    more » « less
  5. ABSTRACT A nonlinear variational auto‐encoder (NLVAE) is developed to reconstruct the plane strain stress field in a solid with embedded cracks subjected to uniaxial tension, uniaxial compression, and shear loading paths. Latent features are sampled from a skew‐normal distribution, which allows encoding marked variations of the features of the stress field across the load steps. The NLVAE is trained and tested based upon stress maps generated with the finite element method (FEM) with cohesive zone elements (CZEs). The NLVAE successfully captures stress concentrations that develop across the loading steps as a result of crack propagation, especially when enhanced disentanglement is emphasized during training. Some latent variables consistently emerge as significant across various microstructure descriptors and loading paths. Correlations observed between the evolution of fabric descriptors and that of their significant stress latent features indicate that the NLVAE can capture important microstructure transitions during the loading process. Crack connectivity, crack eccentricity, and the distribution of zones of highly connected opened cracks versus zones with no cracks are the fabric descriptors that best explain the sequences of latent features that are the most important for the reconstruction of the stress field. Notably, the distributional shape, tail behavior, and symmetry of microstructure descriptor distributions have more influence on the stress field than basic measures of central tendency and spread. 
    more » « less