skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Annual time-series 1-km maps of crop area and types in the conterminous US (CropAT-US) during 1850-2021
By integrating multi-source cross-scale inventories and satellite-based datasets, we reconstructed the annual crop density and crop type map (excluding summer idle/fallow, cropland pasture) in the contiguous US at 1km×1km resolution from 1850 to 2021. The annual crop density map depicts the distribution and fraction of cultivated land, while the crop type map displays the corresponding crop type. The developed datasets fill the data gap in lacking of crop type extent and type maps, which can support the environmental assessment and socioeconomic analysis related to agricultural activities. (Supplement to: Shuchao, Ye et al. (2023): Annual time-series 1-km maps of crop area and types in the conterminous US (CropAT-US): cropping diversity changes during 1850-2021.)  more » « less
Award ID(s):
1945036
PAR ID:
10590595
Author(s) / Creator(s):
; ;
Publisher / Repository:
figshare
Date Published:
Subject(s) / Keyword(s):
Agricultural spatial analysis and modelling Earth system sciences
Format(s):
Medium: X Size: 2230290326 Bytes
Size(s):
2230290326 Bytes
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Agricultural activities have been recognized as an important driver of land cover and land use change (LCLUC) and have significantly impacted the ecosystem feedback to climate by altering land surface properties. A reliable historical cropland distribution dataset is crucial for understanding and quantifying the legacy effects of agriculture-related LCLUC. While several LCLUC datasets have the potential to depict cropland patterns in the conterminous US, there remains a dearth of a relatively high-resolution datasets with crop type details over a long period. To address this gap, we reconstructed historical cropland density and crop type maps from 1850 to 2021 at a resolution of 1 km × 1 km by integrating county-level crop-specific inventory datasets, census data, and gridded LCLUC products. Different from other databases, we tracked the planting area dynamics of all crops in the US, excluding idle and fallow farm land and cropland pasture. The results showed that the crop acreages for nine major crops derived from our map products are highly consistent with the county-level inventory data, with a residual less than 0.2×103 ha (0.2 kha) in most counties (>75 %) during the entire study period. Temporally, the US total crop acreage has increased by 118×106 ha (118 Mha) from 1850 to 2021, primarily driven by corn (30 Mha) and soybean (35 Mha). Spatially, the hot spots of cropland distribution shifted from the Eastern US to the Midwest and the Great Plains, and the dominant crop types (corn and soybean) expanded northwestward. Moreover, we found that the US cropping diversity experienced a significant increase from the 1850s to the 1960s, followed by a dramatic decline in the recent 6 decades under intensified agriculture. Generally, this newly developed dataset could facilitate spatial data development, with respect to delineating crop-specific management practices, and enable the quantification of cropland change impacts on the environment. Annual cropland density and crop type maps are available at https://doi.org/10.6084/m9.figshare.22822838.v2 (Ye et al., 2023). 
    more » « less
  2. Abstract. Understanding and assessing the spatiotemporal patterns in crop-specific phosphorus (P) fertilizer management are crucial for enhancing crop yield and mitigating environmental problems. The existing P fertilizer dataset, derived from sales data, depicts an average application rate over total cropland at the county level but overlooks cross-crop variations. Conversely, the survey-based dataset offers crop-specific application details at the state level yet lacks inter-state variability. By reconciling these two datasets, we developed long-term gridded maps to characterize crop-specific P fertilizer application rates, timing, and methods across the contiguous US at a resolution of 4 km × 4 km from 1850 to 2022. We found that P fertilizer application rate over fertilized areas in the US increased from 0.9 g P m−2 yr−1 in 1940 to 1.9 g P m−2 yr−1 in 2022, with substantial variations among crops. However, approximately 40 % of cropland nationwide has remained unfertilized in the recent decade. The hotspots for P fertilizer use have shifted from the southeastern and eastern US to the Midwest and the Great Plains over the past century, reflecting changes in cropland area, crop choices, and P fertilizer use across different crops. Pre-planting (fall and spring) and broadcast application are prevalent among corn, soybean, and cotton in the Midwest and the Southeast, indicating a high P loss risk in these regions. In contrast, wheat and barley in the Great Plains receive the most intensive P fertilization at planting and via non-broadcast application. The P fertilizer management dataset developed in this study can advance our comprehension of agricultural P budgets and facilitate the refinement of best P fertilizer management practices to optimize crop yield and to reduce P loss. Datasets are available at https://doi.org/10.5281/zenodo.10700821 (Cao et al., 2024). 
    more » « less
  3. This dataset presents spatiotemporal dynamics of phosphorus (P) fertilizer management (application rate, timing, and method) at a 4km × 4 km resolution in agricultural land of the contiguous U.S. from 1850 to 2022. By harmonizing multiple data sources, we reconstructed the county-level crop-specific P fertilizer use history. We then spatialized and resampled P fertilizer use data to 4 km × 4 km gridded maps based on historical U.S. cropland distribution and crop type database developed by Ye et al. (2024). This dataset contains (1) P fertilizer total consumption and mean application rate at the national level (Tabular); (2) P fertilizer consumption of 11 crops at the state level (Tabular); (3) P fertilizer consumption of permanent pasture (Tabular); (4) P fertilizer consumption of non-farm at the state level (Tabular); (5) P fertilizer application rate of 11 crop types at the state level (Tabular); (6) P fertilizer application rate of 11 crop types at the county level (Tabular); (7) P fertilizer application timing ratio at the state level (Tabular); (8) P fertilizer application method ratio at the state level (Tabular); (9) Gridded maps of P fertilizer application rate based on state-level data; (10) and (11) Gridded maps of P fertilizer application rate based on county-level data; (12)-(20) Gridded maps of P fertilizer application rate for each crop. A detailed description of the data development processes, key findings, and uncertainties can be found in Cao, P., Yi, B., Bilotto, F., Gonzalez Fischer, C., Herrero, M., Lu, C.: Crop-specific Management History of Phosphorus fertilizer input (CMH-P) in the croplands of United States: Reconciliation of top-down and bottom-up data sources, is under review for the journal Earth System Science Data (ESSD). https://essd.copernicus.org/preprints/essd-2024-67/#discussion.  This work is supported by the Iowa Nutrient Research Center, the ISU College of Liberal Arts and Sciences Dean's Faculty Fellowship, and NSF CAREER grant (1945036). 
    more » « less
  4. Abstract Crop water productivity (CWP) metrics can reveal how the dynamics of crop production and water use change across space and time. We use field-scale satellite inputs from 2016–2021 to estimate potential water savings for four crops (almonds, grapes, walnuts, and citrus—which collectively account for approximately one-third of California’s cropland area), within critically overdrafted groundwater sub-basins of California’s San Joaquin Valley. These annual estimates of field-level water savings potential are based on locally achievable CWP values for each crop type. Our findings show considerable spatial variation in CWP and potential water savings within each sub-basin. We find that increasing CWP to peak efficiency (defined as improving fields to the 95th percentile of observed CWP) for four crops could meet up to 36% of the estimated annual overdraft in San Joaquin Valley. For comparison, fallowing 5% of the four crop type fields in the same study area could potentially reduce annual overdraft by 11%. By delivering results at the field scale, our work can inform targeted interventions by irrigation district managers and more efficient allocation of state incentives for improved water management. For example, we estimate that state grant funding for water efficiency upgrades could have amplified potential water savings threefold by targeting investments to the least efficient fields. 
    more » « less
  5. null (Ed.)
    Abstract Background Cryo-EM data generated by electron tomography (ET) contains images for individual protein particles in different orientations and tilted angles. Individual cryo-EM particles can be aligned to reconstruct a 3D density map of a protein structure. However, low contrast and high noise in particle images make it challenging to build 3D density maps at intermediate to high resolution (1–3 Å). To overcome this problem, we propose a fully automated cryo-EM 3D density map reconstruction approach based on deep learning particle picking. Results A perfect 2D particle mask is fully automatically generated for every single particle. Then, it uses a computer vision image alignment algorithm (image registration) to fully automatically align the particle masks. It calculates the difference of the particle image orientation angles to align the original particle image. Finally, it reconstructs a localized 3D density map between every two single-particle images that have the largest number of corresponding features. The localized 3D density maps are then averaged to reconstruct a final 3D density map. The constructed 3D density map results illustrate the potential to determine the structures of the molecules using a few samples of good particles. Also, using the localized particle samples (with no background) to generate the localized 3D density maps can improve the process of the resolution evaluation in experimental maps of cryo-EM. Tested on two widely used datasets, Auto3DCryoMap is able to reconstruct good 3D density maps using only a few thousand protein particle images, which is much smaller than hundreds of thousands of particles required by the existing methods. Conclusions We design a fully automated approach for cryo-EM 3D density maps reconstruction (Auto3DCryoMap). Instead of increasing the signal-to-noise ratio by using 2D class averaging, our approach uses 2D particle masks to produce locally aligned particle images. Auto3DCryoMap is able to accurately align structural particle shapes. Also, it is able to construct a decent 3D density map from only a few thousand aligned particle images while the existing tools require hundreds of thousands of particle images. Finally, by using the pre-processed particle images,Auto3DCryoMap reconstructs a better 3D density map than using the original particle images. 
    more » « less