Abstract We present the firstgri-band period–luminosity (PL) and period–Wesenheit (PW) relations for the fundamental mode anomalous Cepheids. These PL and PW relations were derived from a combined sample of five anomalous Cepheids in globular cluster M92 and the Large Magellanic Cloud, both of which have distance accurate to ∼1% available from literature. Ourg-band PL relation is similar to theB-band PL relation as reported in previous study. We applied our PL and PW relations to anomalous Cepheids discovered in dwarf galaxy Crater II, and found a larger but consistent distance modulus than the recent measurements based on RR Lyrae. Our calibrations ofgri-band PL and PW relations, even though less precise due to small number of anomalous Cepheids, will be useful for distance measurements to dwarf galaxies.
more »
« less
This content will become publicly available on April 1, 2026
The Legacy of Henrietta Leavitt: A Re-analysis of the First Cepheid Period–Luminosity Relation
Abstract Henrietta Swan Leavitt’s discovery of the relationship between the period and luminosity (hereafter the Leavitt Law) of 25 variable stars in the Small Magellanic Cloud, published in 1912, revolutionized cosmology. These variables, eventually identified as Cepheids, became the first known “standard candles” for measuring extragalactic distances and remain the gold standard for this task today. Leavitt measured light curves, periods, and minimum and maximum magnitudes from painstaking visual inspection of photographic plates. Her work paved the way for the first precise series of distance measurements that helped set the scale of the Universe, and later the discovery of its expansion by Edwin Hubble in 1929. Here, we re-analyze Leavitt’s first Period–Luminosity relation using observations of the same set of stars but with modern data and methods of Cepheid analysis. Using only data from Leavitt’s notebooks, we assess the quality of her light curves, measured periods, and the slope and scatter of her Period–Luminosity relations. We show that modern data and methods, for the same objects, reduce the scatter of the Period–Luminosity relation by a factor of two. We also find a bias brightward at the short period end, due to the nonlinearity of the plates and environmental crowding. Overall, Leavitt’s results are in excellent agreement with contemporary measurements, reinforcing the value of Cepheids in cosmology today, a testament to the enduring quality of her work.
more »
« less
- Award ID(s):
- 2401770
- PAR ID:
- 10590928
- Publisher / Repository:
- IOP Science
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 137
- Issue:
- 4
- ISSN:
- 0004-6280
- Page Range / eLocation ID:
- 044001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. As primary anchors of the distance scale, Cepheid stars play a crucial role in our understanding of the distance scale of the Universe because of their period-luminosity relation. Determining precise and consistent parameters (radius, temperature, color excess, and projection factor) of Cepheid pulsating stars is therefore very important. Aims. With the high-precision parallaxes delivered by the early third Gaia data release (EDR3), we aim to derive various parameters of Cepheid stars in order to calibrate the period-luminosity and period-radius relations and to investigate the relation of period to p -factor. Methods. We applied an implementation of the parallax-of-pulsation method through the algorithm called spectro-photo-interferometry of pulsating stars (SPIPS), which combines all types of available data for a variable star (multiband and multicolor photometry, radial velocity, effective temperature, and interferometry measurements) in a global modeling of its pulsation. Results. We present the SPIPS modeling of a sample of 63 Galactic Cepheids. Adopting Gaia EDR3 parallaxes as an input associated with the best available dataset, we derive consistent values of parameters for these stars such as the radius, multiband apparent magnitudes, effective temperatures, color excesses, period changes, Fourier parameters, and the projection factor. Conclusions. Using the best set of data and the most precise distances for Milky Way Cepheids, we derive new calibrations of the period-luminosity and period-radius relations: M K S = −5.529 ±0.015 − 3.141 ±0.050 (log P − 0.9) and log R = 1.763 ±0.003 + 0.653 ±0.012 (log P − 0.9). After investigating the dependences of the projection factor on the parameters of the stars, we find a high dispersion of its values and no evidence of its correlation with the period or with any other parameters such as radial velocity, temperature, or metallicity. Statistically, the p -factor has an average value of p = 1.26 ± 0.07, but with an unsatisfactory agreement ( σ = 0.15). In absence of any clear correlation between the p -factor and other quantities, the best agreement is obtained under the assumption that the p -factor can take any value in a band with a width of 0.15. This result highlights the need for a further examination of the physics behind the p -factor.more » « less
-
Abstract δScuti variables are found at the intersection of the classical instability strip and the main sequence on the Hertzsprung–Russell diagram. With space-based photometry providing millions of light curves of A-F type stars, we can now probe the occurrence rate ofδScuti pulsations in detail. Using the 30 minutes cadence light curves from NASA's Transiting Exoplanet Survey Satellite's first 26 sectors, we identify variability in 103,810 stars within 5–24 cycles per day down to a magnitude ofT= 11.25. We fit the period–luminosity relation of the fundamental radial mode forδScuti stars in the GaiaGband, allowing us to distinguish classical pulsators from contaminants for a subset of 39,367 stars. Out of this subset, over 15,918 are found on or above the expected period–luminosity relation. We derive an empirical red edge to the classical instability strip using Gaia photometry. The center where the pulsator fraction peaks at 50%–70%, combined with the red edge, agrees well with previous work in the Kepler field. While many variable sources are found below the period–luminosity relation, over 85% of sources inside of the classical instability strip derived in this work are consistent with beingδScuti stars. The remaining 15% of variables within the instability strip are likely hybrid orγDoradus pulsators. Finally, we discover strong evidence for a correlation between pulsator fraction and spectral line broadening from the Radial Velocity Spectrometer on board the Gaia spacecraft, confirming that rotation has a role in driving pulsations inδScuti stars.more » « less
-
Abstract We used a convolutional neural network to infer stellar rotation periods from a set of synthetic light curves simulated with realistic spot-evolution patterns. We convolved these simulated light curves with real TESS light curves containing minimal intrinsic astrophysical variability to allow the network to learn TESS systematics and estimate rotation periods despite them. In addition to periods, we predict uncertainties via heteroskedastic regression to estimate the credibility of the period predictions. In the most credible half of the test data, we recover 10% accurate periods for 46% of the targets, and 20% accurate periods for 69% of the targets. Using our trained network, we successfully recover periods of real stars with literature rotation measurements, even past the 13.7 day limit generally encountered by TESS rotation searches using conventional period-finding techniques. Our method also demonstrates resistance to half-period aliases. We present the neural network and simulated training data, and introduce the softwarebutterpyused to synthesize the light curves using realistic starspot evolution.more » « less
-
Abstract The intermediate period gap, discovered by Kepler, is an observed dearth of stellar rotation periods in the temperature–period diagram at ∼20 days for G dwarfs and up to ∼30 days for early-M dwarfs. However, because Kepler mainly targeted solar-like stars, there is a lack of measured periods for M dwarfs, especially those at the fully convective limit. Therefore it is unclear if the intermediate period gap exists for mid- to late-M dwarfs. Here, we present a period catalog containing 40,553 rotation periods (9535 periods >10 days), measured using the Zwicky Transient Facility (ZTF). To measure these periods, we developed a simple pipeline that improves directly on the ZTF archival light curves and reduces the photometric scatter by 26%, on average. This new catalog spans a range of stellar temperatures that connect samples from Kepler with MEarth, a ground-based time-domain survey of bright M dwarfs, and reveals that the intermediate period gap closes at the theoretically predicted location of the fully convective boundary ( G BP − G RP ∼ 2.45 mag). This result supports the hypothesis that the gap is caused by core–envelope interactions. Using gyro-kinematic ages, we also find a potential rapid spin-down of stars across this period gap.more » « less
An official website of the United States government
