skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 11, 2026

Title: Relating the early‐age reaction kinetics and material property development in a model metakaolin geopolymer
Abstract Geopolymers, a class of alkali‐activated binders, are studied as sustainable alternatives to Ordinary Portland Cement due to their potential for CO2emission reduction. However, the critical relationship between early‐age reaction kinetics, the development of material properties, and evolving chemical structure remains insufficiently explored, primarily because of the complexity of the underlying chemical reactions and the wide variety of geopolymer chemistries. To address this, we investigate the mechanism of early‐age (<72 h) strength development of a model metakaolin geopolymer by measuring curing kinetics using isothermal calorimetry, material property development via rheology, and chemical coordination at distinct extents of reaction via29Si and27Al NMR. A novel approach of collecting solid‐state29Si and27Al NMR spectra at low temperature (−17°C) successfully quenches the geopolymer reaction, allowing for spectrum collection at a desired extent of reaction despite long29Si NMR spectrum collection times. Applying the Avrami kinetic model to deconvoluted calorimetry data enables independent analysis of dissolution and polycondensation/crosslinking reactions. From these data, the gel reaction product mass fraction is estimated, revealing an exponential relationship with the storage modulus in the activated metakaolin slurry. This study provides new insights into the interconnected dynamics of molecular chemistry, reaction kinetics, rheology, and strength development, offering a semi‐empirical framework for understanding property evolution in geopolymers more broadly.  more » « less
Award ID(s):
2118944
PAR ID:
10590936
Author(s) / Creator(s):
; ;
Publisher / Repository:
J. Am. Ceramic Soc.
Date Published:
Journal Name:
Journal of the American Ceramic Society
ISSN:
0002-7820
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Geopolymers, as a potentially environmentally friendly alternative to Portland cement, are increasingly attracting attention in the construction industry. Various methods have been applied for customizing the properties of geopolymers and improving their commercial viability. One of the promising methods for refining the properties of geopolymers such as their toughness is the use of short fibers. The effectiveness of a high‐strength short fiber in the geopolymer matrix is largely dependent on the interfacial bonding between the fiber and its surrounding matrix. While the importance of this interfacial chemistry is highlighted in the literature, the characteristics of this bonding structure have not been fully understood. In this paper, we aim to investigate the bonding mechanism between the carbon fiber and metakaolin‐based geopolymer matrix. For the first time, the existence and nature of the chemical bonding at the interfacial region (interphase) between carbon fiber and geopolymer matrix has been revealed. X‐ray pair distribution function computed tomography (PDF‐CT), field emission‐scanning electron microscopy imaging, and nanoindentation techniques are employed to discern the chemo‐mechanical properties of the interphase. PDF‐CT results show the emergence of a new atom–atom correlation at the interfacial region (around 1.82 Å). This correlation is a characteristic of interfacial bonding between the fiber and its surrounding matrix, where the existence of chemical linkages (potentiallyVAl‐O‐C) between fibers and the matrix contributes to the adhesion between the two constituents making up the composite. Due to such chemical bonding, the nanomechanical properties of the interfacial region fall between that of the carbon fiber and geopolymer. The combination of advanced techniques is proved useful for enhancing our understanding of the interfacial chemistry between fibers and the binding matrix. This level of knowledge facilitates the engineering of composite systems through the manipulation of their nanostructure. 
    more » « less
  2. Abstract A novel method is developed for reusing the waste glass fiber-reinforced polymer (GFRP) powder as a precursor in geopolymer production. Several activation parameters that affect the workability and strength gain of GFRP powder-based geopolymers are investigated. The results of an experimental study reveal that the early strength of GFRP powder-based geopolymer pastes develops slowly at ambient temperature. The highest compressive strength of GFRP powder-based geopolymer pastes is 7.13 MPa at an age of 28 days. The ratio of compressive strength to flexural strength of GFRP powder-based-geopolymers is lower than that of fly ash and ground granulated blast furnace slag (GGBS)-based geopolymers, indicating that the incorporation of GFRP powder can improve the geopolymer brittleness. GGBS is incorporated into geopolymer blends to accelerate the early activity of GFRP powder. The binary geopolymer pastes exhibit shorter setting times and higher mechanical strength values than those of single GFRP powder geopolymer pastes. The GGBS geopolymer concrete mixture with 30 wt% GFRP powder displayed the highest compressive strength and flexural strength values and was less brittle. The developed binary GFRP powder/GGBS-based geopolymers reduce the disadvantages of single GFRP powder or GGBS geopolymers, and thus, offer high potential as a building construction material. 
    more » « less
  3. The catalytic properties of zeolites are intimately linked to the distribution and relative positions of Al atoms and defects in the pore network. However, characterizing this distribution is challenging, in particular when different local Al arrangements are considered. In this contribution we use a combination of first principles calculations and experimental measurements to develop a model for the Al-distribution in protonated SSZ-13. We furthermore apply this model to understand trends in OH-IR, 27 Al-NMR and 29 Si-NMR spectra. We use a Boltzmann distribution to predict the proton position for a given local Al configuration and show that for each configuration several H positions are occupied. Therefore a multi-peak spectrum in OH-IR vibrational spectroscopy is observed for all Al configurations, which is in line with experimentally measured spectra for zeolites at different Si/Al ratios. From NMR spectroscopy we find that the proton position leads to significant shifts in 27 Al-NMR and 29 Si-NMR spectra due to the modification of the local strain, which is lost when a uniform background charge is introduced. These findings are supported by experimental measurements. Finally we discuss the shortcomings of the presented model in terms of unit cell size and the impact of adjacent unit cells. 
    more » « less
  4. Abstract A geopolymer was produced from coal ash generated from an integrated gasification combined cycle (IGCC) plant and its water resistance was evaluated. For this purpose, the geopolymer specimens were immersed in water for 30 days to measure changes in microstructure and alkalinity of the immersion liquid. Particularly, the experiment was carried out with foaming status of the geopolymers and parameters of room temperature aging condition, and immersion time. The foamed geopolymer containing 0.1 wt% Si-sludge had pores with a diameter of 1 to 3 mm and exhibited excellent foamability. Also, the calcium-silicate-hydrate crystal phase appeared in the foamed geopolymer. In the geopolymer immersion experiment, the pH of the immersion liquid increased with time, because the un-reacted alkali activator remained was dissolved in the immersion liquid. From the pH change of the immersion liquid, it was found that geopolymer reaction in the foamed specimen was completed faster than the non-foamed specimen. Through this study, it was possible to successfully produce foamed and non-foamed geopolymers recycled from IGCC coal ash. Also the necessary data for the safe application of IGCC coal ash-based geopolymers to areas where water resistance is needed were established; for example, the process conditions for room temperature aging time, effect of foaming status, immersion time and so on. 
    more » « less
  5. In this study, four geopolymer sorbents GP0, GP10, GP30 and GP50 were synthesized using volcanic ash (VA) and metakaolin (MK) blends as precursors with 0, 10, 30 and 50% MK content by mass, respectively. The materials were characterized by X-ray fuorescence (XRF), X-ray difraction (XRD), Raman spectroscopy, and Brunauer–Emmett–Teller (BET) surface area analyses, revealing successful geopolymerization of the precursors and increasing surface area with increasing MK content. The sorption performance of the VA, MK and VA-MK geopolymers was then evaluated for the removal of cationic methylene blue (MB) dye from aqueous media. Sorption capacity was independent of composition, providing fexibility in sorbent synthesis. Sorption rate, on the other hand, was 3–8 times greater for the VA-MK geopolymers than the precursor materials. The equilibrium adsorption data were suitably explained by the Freundlich model, denoting multilayer adsorption onto a heterogeneous adsorption surface with higher Freundlich afnity constant (KF) for geopolymers than VA. The adsorption kinetics obeyed the pseudo-second-order (PSO) kinetic law with an average of 98% removal efciency in 30 min. MB uptake was pH-dependent and driven by electrostatic chemisorption interactions. These results motivate further studies on the use of locally sourced geopolymers for water purifcation applications. 
    more » « less