skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extended fiducial inference for individual treatment effects via deep neural networks
Abstract Individual treatment effect estimation has gained significant attention in recent data science literature. This work introduces the Double Neural Network (Double-NN) method to address this problem within the framework of extended fiducial inference (EFI). In the proposed method, deep neural networks are used to model the treatment and control effect functions, while an additional neural network is employed to estimate their parameters. The universal approximation capability of deep neural networks ensures the broad applicability of this method. Numerical results highlight the superior performance of the proposed Double-NN method compared to the conformal quantile regression (CQR) method in individual treatment effect estimation. From the perspective of statistical inference, this work advances the theory and methodology for statistical inference of large models. Specifically, it is theoretically proven that the proposed method permits the model size to increase with the sample sizenat a rate of$$O(n^{\zeta })$$ O ( n ζ ) for some$$0 \le \zeta <1$$ 0 ζ < 1 , while still maintaining proper quantification of uncertainty in the model parameters. This result marks a significant improvement compared to the range$$0\le \zeta < \frac{1}{2}$$ 0 ζ < 1 2 required by the classical central limit theorem. Furthermore, this work provides a rigorous framework for quantifying the uncertainty of deep neural networks under the neural scaling law, representing a substantial contribution to the statistical understanding of large-scale neural network models.  more » « less
Award ID(s):
2210819 2015498
PAR ID:
10591105
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Statistics and Computing
Volume:
35
Issue:
4
ISSN:
0960-3174
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Assuming the Riemann Hypothesis, we study negative moments of the Riemann zeta-function and obtain asymptotic formulas in certain ranges of the shift in ζ ( s ) {\zeta(s)}. For example, integrating | ζ ( 1 2 + α + i t ) | - 2 k {|\zeta(\frac{1}{2}+\alpha+it)|^{-2k}}with respect totfromTto 2 T {2T}, we obtain an asymptotic formula when the shift α is roughly bigger than 1 log T {\frac{1}{\log T}}and k < 1 2 {k<\frac{1}{2}}. We also obtain non-trivial upper bounds for much smaller shifts, as long as log 1 α log log T {\log\frac{1}{\alpha}\ll\log\log T}. This provides partial progress towards a conjecture of Gonek on negative moments of the Riemann zeta-function, and settles the conjecture in certain ranges. As an application, we also obtain an upper bound for the average of the generalized Möbius function. 
    more » « less
  2. Abstract We prove that there are$$\gg \frac{X^{\frac{1}{3}}}{(\log X)^2}$$ X 1 3 ( log X ) 2 imaginary quadratic fieldskwith discriminant$$|d_k|\le X$$ | d k | X and an ideal class group of 5-rank at least 2. This improves a result of Byeon, who proved the lower bound$$\gg X^{\frac{1}{4}}$$ X 1 4 in the same setting. We use a method of Howe, Leprévost, and Poonen to construct a genus 2 curveCover$$\mathbb {Q}$$ Q such thatChas a rational Weierstrass point and the Jacobian ofChas a rational torsion subgroup of 5-rank 2. We deduce the main result from the existence of the curveCand a quantitative result of Kulkarni and the second author. 
    more » « less
  3. Abstract Rooted binarygalledtrees generalize rooted binary trees to allow a restricted class of cycles, known asgalls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees withnleaves to enumerate rooted binary unlabeled galled trees withnleaves, also enumerating rooted binary unlabeled galled trees withnleaves andggalls,$$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$ 0 g n - 1 2 . The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binarynormalunlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for alln. We show that the number of rooted binary unlabeled galled trees grows with$$0.0779(4.8230^n)n^{-\frac{3}{2}}$$ 0.0779 ( 4 . 8230 n ) n - 3 2 , exceeding the growth$$0.3188(2.4833^n)n^{-\frac{3}{2}}$$ 0.3188 ( 2 . 4833 n ) n - 3 2 of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term,$$0.3910n^{\frac{1}{2}}$$ 0.3910 n 1 2 compared to$$0.3188n^{-\frac{3}{2}}$$ 0.3188 n - 3 2 . For a fixed number of leavesn, the number of gallsgthat produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of$$g=0$$ g = 0 and the maximum of$$g=\lfloor \frac{n-1}{2} \rfloor $$ g = n - 1 2 . We discuss implications in mathematical phylogenetics. 
    more » « less
  4. Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ ε 2 conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ Ω + , Ω R n + 1 , and$$x\in \mathbb{R}^{n+1}$$ x R n + 1 ,$$r>0$$ r > 0 , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ ε n ( x , r ) : = 1 r n inf H + H n ( ( ( B ( x , r ) H + ) Ω + ) ( ( B ( x , r ) H ) Ω ) ) , where the infimum is taken over all open affine half-spaces$$H^{+}$$ H + such that$$x \in \partial H^{+}$$ x H + and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ H = R n + 1 H + . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ x R n + 1 where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ 0 1 ε n ( x , r ) 2 d r r < is$$n$$ n -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ Ω + ,$$\Omega ^{-}$$ Ω are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ Ω + Ω satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ x Ω + Ω and$$r>0$$ r > 0 , we denote by$$\alpha ^{\pm }(x,r)$$ α ± ( x , r ) the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ Ω ± B ( x , r ) . We show that, up to a set of$$\mathcal{H}^{n}$$ H n measure zero,$$x$$ x is a tangent point for both$$\partial \Omega ^{+}$$ Ω + and$$\partial \Omega ^{-}$$ Ω if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ 0 1 min ( 1 , α + ( x , r ) + α ( x , r ) 2 ) d r r < . The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ ε 2 conjecture of Carleson. 
    more » « less
  5. Abstract The elliptic flow$$(v_2)$$ ( v 2 ) of$${\textrm{D}}^{0}$$ D 0 mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ D 0 ) was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ s NN = 5.02  TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ D 0 mesons were reconstructed at midrapidity$$(|y|<0.8)$$ ( | y | < 0.8 ) from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ D 0 K - π + , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ 2 < p T < 12  GeV/c. The result indicates a positive$$v_2$$ v 2 for non-prompt$${{\textrm{D}}^{0}}$$ D 0 mesons with a significance of 2.7$$\sigma $$ σ . The non-prompt$${{\textrm{D}}^{0}}$$ D 0 -meson$$v_2$$ v 2 is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ σ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ 2 < p T < 8 GeV / c , and compatible with the$$v_2$$ v 2 of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties. 
    more » « less