We show that if and are linear transformations from to satisfying certain mild conditions, then, for any finite subset of , This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of and . As an application, we prove a lower bound for when is a finite set of real numbers and is an algebraic number. In particular, when is of the form for some , each taken as small as possible for such a representation, we show that This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case . 
                        more » 
                        « less   
                    
                            
                            On the Size of the Singular Set of Minimizing Harmonic Maps
                        
                    
    
            We consider minimizing harmonic maps from into a closed Riemannian manifold and prove: 1. an extension to of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold is finite, we have\[ \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is we obtain that the singular set of is stable under small -perturbations of the boundary data. In dimension both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space with and satisfying . We also discuss sharpness. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2044898
- PAR ID:
- 10591159
- Publisher / Repository:
- AMS
- Date Published:
- Journal Name:
- Memoirs of the American Mathematical Society
- Volume:
- 302
- Issue:
- 1519
- ISSN:
- 0065-9266
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This is the first of our papers on quasi-split affine quantum symmetric pairs , focusing on the real rank one case, i.e., equipped with a diagram involution. We construct explicitly a relative braid group action of type on the affine quantum group . Real and imaginary root vectors for are constructed, and a Drinfeld type presentation of is then established. This provides a new basic ingredient for the Drinfeld type presentation of higher rank quasi-split affine quantum groups in the sequels.more » « less
- 
            We show that for primes with , the class number of is divisible by . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when , there is always a cusp form of weight and level whose th Fourier coefficient is congruent to modulo a prime above , for all primes . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- extension of .more » « less
- 
            Let be a bounded -Reifenberg flat domain, with small enough, possibly with locally infinite surface measure. Assume also that is an NTA (non-tangentially accessible) domain as well and denote by and the respective harmonic measures of and with poles . In this paper we show that the condition that is equivalent to being a chord-arc domain with inner unit normal belonging to .more » « less
- 
            We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    