This chapter discusses how radiogenic and stable isotopes can be used in the study of metallic mineral deposits. Although the chapter is mostly focused on the radiogenic (Pb, Os) and heavy stable (Fe, Cu, Zn) isotopes of metallic elements, we complement the discussion highlighting also the power of stable isotopes of light elements, which are major to significant components of hydrothermal fluids and rocks (e.g., H, B, C, N, O, S), as well as of radiogenic isotopes of elements (Sr, Nd, Hf ) that are useful in tracing fluid/magma sources and their interaction with the host rocks. In the first part of this chapter we discuss general aspects of isotopes clarifying the differences between stable non-radiogenic and stable radiogenic isotopes and, consequently, their different applicability to metallogenic studies. Due to their properties, stable non-radiogenic isotopes record mass-dependent fractionation that occur in many reactions associated with the formation of mineral deposits. Mass-dependent fractionation of stable non-radiogenic isotopes occurs both under equilibrium and non-equilibrium (kinetic) conditions of the reactions leading to ore mineral deposition and is controlled by various physico-chemical parameters, like, among the principal ones, temperature, oxygen fugacity, and biological activity. Therefore, stable non-radiogenic isotopes can inform us about the physico-chemical and, eventually, biological processes that control ore mineral deposition and also on the sources of some metals (e.g., transition metal isotopes of elements like Fe, Cu, Zn) or of the fluids (e.g., H, C, O, N, S isotopes) and even of metal ligands (e.g., S, Cl). We conclude the first part of the chapter providing some hints on the strategy of sampling and on the instrumentation related to isotopic studies. In the second part we discuss radioactive-radiogenic isotope systems and their applications in metallogenic studies of metallic mineral deposits. Stable radiogenic isotopes are characterized by relative variations that are controlled, in each geological system, by the addition of a radiogenic component of an isotope, derived from the decay of a radioactive parent, to the same radiogenic isotope already present in the Earth since its formation 4.55 Gyr ago. This relative variation is usually expressed as the ratio of a radiogenic isotope of an element to a non-radiogenic isotope of the same element. The ratio of these two isotopes has increased since the Earth formation and the magnitude of its variations depends on the radioactive/ radiogenic isotope ratios in different geological systems and on the time elapsed since the system has formed. The Earth is 4.55 Gyr old and has evolved from an initially homogeneous isotopic composition to reservoirs (e.g., mantle, crust) and crustal rocks with very variable radioactive/radiogenic isotope ratios due to magmatic, metamorphic, weathering, atmospheric and biologic processes, among others. This has resulted in extremely large variations of radiogenic isotopes in rocks and reservoirs of the Earth which can track various geological processes. In ore geology, stable radiogenic isotopes are best suited for tracing metal (e.g., Pb, Os) sources from different rocks and reservoirs (e.g., mantle, upper crust, lower crust), fluid-rock interactions (i.e., the hydrothermal plumbing system), or magma-host rock interactions (e.g., host rock assimilation by magmas associated with magmatic-hydrothermal deposits). Radioactive-radiogenic isotope systems allow us to determine also absolute ages of suitable minerals that are found in mineral deposits. This is an essential information in metallogeny that allows us to link the formation of a mineral deposit to a specific geological process and/or to specific periods of the Earth’s history. We discuss various dating methods that are extensively applied to date mineral deposits. These methods can be subdivided into those that allow a direct dating of ore minerals (e.g., RedOs dating of molybdenite, UdPb dating of cassiterite) and those that allow dating of minerals that are demonstrably related with the mineralization (e.g., UdPb dating of zircon from magmatic rocks associated with magmatic-hydrothermal deposits; Ar/Ar dating of K-bearing minerals resulting from alteration associated with various types of mineral deposits). We discuss pros and cons of using these various methods and also mention methods that are less used (because potentially less accurate and precise), but sometimes represent the only possibility to provide an age to deposit types that are notoriously difficult to date (e.g., MVT and Carlin-type deposits). We highlight the power of both stable radiogenic and non-radiogenic isotopes in unravelling the genesis of metallic mineral deposits through a series of conceptual and real examples applied to a broad range of mineral deposit types such as porphyry systems (i.e., porphyry deposits, high- and intermediate-sulfidation epithermal deposits, skarn, carbonate replacement deposits, sediment-hosted Au deposits), low-sulfidation epithermal deposits, IOCG deposits, ortho-magmatic deposits, volcanic-hosted massive sulfide deposits (VHMS), sediment-hosted deposits (stratiform copper, MVT), and supergene deposits. In the third part of the chapter, we discuss the use of transition metal stable non-radiogenic isotopes to mineral deposits. Although in its infancy, the application of transition metal isotopes to mineral deposit investigation is quickly growing because these isotopes allow us to address different aspects of the formation of mineral deposits compared to radiogenic isotopes. In particular, isotopes of transition metals (like stable isotopes of light elements) undergo mass-dependent fractionation processes that may be associated with different types of equilibrium and non-equilibrium chemical, physical and biological reactions occurring during the formation of mineral deposits. We focus on the applications of the isotopes of Cu, Fe and Zn to various deposit types, because isotopes of these transition metals are those that have been most extensively used in mineral deposit studies. Mass-independent fractionation may also occur for isotopes of some elements and could be a developing field that has not yet been extensively explored in the study of mineral deposits.
more »
« less
This content will become publicly available on January 1, 2026
Global Sn Isotope Compositions of Cassiterite Identify the Magmatic–Hydrothermal Evolution of Tin Ore Systems
Published Sn isotope data along with 150 new analyses of cassiterite and four granite analyses constrain two major tin isotope fractionation steps associated with (1) separation of tin from the magma/orthomagmatic transitional environment and (2) hydrothermal activity. A distinct Sn isotope difference across deposit type, geological host rocks, and time of ore deposit formation demonstrates that the difference in the mean δ124Sn value represents the operation of a unified process. The lower Sn isotope values present in both residual igneous rocks and pegmatite suggest that heavier Sn isotopes were extracted from the system during orthomagmatic fluid separation, likely by F ligands with Sn. Rayleigh distillation models this first F ligand-induced fractionation. The subsequent development of the hydrothermal system is characterized by heavier Sn isotope composition proximal to the intrusion, which persists in spite of Sn isotope fractionating towards isotopically lighter Sn during hydrothermal evolution.
more »
« less
- Award ID(s):
- 2233426
- PAR ID:
- 10591163
- Publisher / Repository:
- MPDI
- Date Published:
- Journal Name:
- Geosciences
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2076-3263
- Page Range / eLocation ID:
- 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We undertook Zr isotope measurements on zircon, titanite, biotite, amphibole, and whole rocks from the La Posta pluton (Peninsular Ranges, southern California) together with trace element analyses and U-Pb age measurements to understand the controls on Zr isotope fractionation in igneous rocks, including temperature, crystallization sequence, and kinetic effects. We find large (>0.6‰) Zr isotope fractionations (expressed as δ94/90Zr) between titanite and zircon forming at approximately the same temperature. Using equilibrium fractionation factors calculated from ionic and ab initio models, we infer the controls on Zr isotope evolution to include the relative order in which phases appear on the liquidus, with titanite fractionation resulting in isotopically lighter melt and zircon fractionation resulting in isotopically heavier melt. While these models of Zr fractionation can explain δ94/90Zr variations in zircon of up to ∼1.5‰, crystallization order, temperature and presence of co-crystallizing phases do not explain all aspects of the intracrystalline Zr isotopic distribution in zircons in the La Posta pluton or the large range of Zr isotopic values among zircons (>2‰). Without additional constraints, such as knowledge of co-crystallizing phases and a better understand of the true causes of Zr isotope fractionation, Zr isotopes in zircon remains an ambiguous proxy of magmatic evolution.more » « less
-
null (Ed.)Zircons widely occur in magmatic rocks and often display internal zonation finely recording the magmatic history. Here, we presented in situ high-precision (2SD <0.15‰ for δ 94 Zr) and high–spatial-resolution (20 µm) stable Zr isotope compositions of magmatic zircons in a suite of calc-alkaline plutonic rocks from the juvenile part of the Gangdese arc, southern Tibet. These zircon grains are internally zoned with Zr isotopically light cores and increasingly heavier rims. Our data suggest the preferential incorporation of lighter Zr isotopes in zircon from the melt, which would drive the residual melt to heavier values. The Rayleigh distillation model can well explain the observed internal zoning in single zircon grains, and the best-fit models gave average zircon–melt fractionation factors for each sample ranging from 0.99955 to 0.99988. The average fractionation factors are positively correlated with the median Ti-in-zircon temperatures, indicating a strong temperature dependence of Zr isotopic fractionation. The results demonstrate that in situ Zr isotope analyses would be another powerful contribution to the geochemical toolbox related to zircon. The findings of this study solve the fundamental issue on how zircon fractionates Zr isotopes in calc-alkaline magmas, the major type of magmas that led to forming continental crust over time. The results also show the great potential of stable Zr isotopes in tracing magmatic thermal and chemical evolution and thus possibly continental crustal differentiation.more » « less
-
Copper shows limited isotopic variation in equilibrated mantle-derived silicate rocks, but large isotopic fractionation during kinetic processes. For example, lunar and terrestrial samples that have experienced evaporation were found to have an isotopic fractionation of up to 12.5‰ in their 65Cu/63Cu ratios, while komatiites, lherzolites, mid-ocean ridge and ocean island basalts show negligible Cu isotope fractionation as a result of equilibrium partial melting and crystal fractionation. The contrast between the observed magnitudes of equilibrium and kinetic isotope fractionation for Cu calls for a better understanding of kinetic Cu isotope fractionation. One of the mechanisms for creating large kinetic isotopic fractionation even at magmatic temperatures is diffusion. In this study, we performed Cu isotopic measurements on Cu diffusion couple experiments to constrain the beta factor for Cu isotopic fractionation by diffusion. We demonstrate a Monte Carlo approach for the regression and error estimation of the measured isotope profiles, which yielded beta values of 0.16 ± 0.03 and 0.18 ± 0.03 for the two experimental charges measured. Our results are subsequently applied to a quantitative model for the evaporation of a molten sphere to discuss the role of diffusion in affecting the bulk Cu isotopic fractionation between liquid and vapor during evaporation. We apply the model to Cu evaporation experiments and tektite data to show that convection primarily governs mass transport for evaporation during tektite formation. In addition, we show that Cu isotopes can be used as a tool to test the role of kinetics during various magmatic processes such as magmatic sulfide ore deposit formation, porphyry-type ore deposit formation, and fluid-rock interactions.more » « less
-
Lode gold deposits, which are currently the world’s major gold supply, have been shown to be generated mostly by phase separation of metamorphic fluids and/or interaction between these fluids and wall rocks. Here we use garnet oxygen isotopes by secondary ion mass spectrometry to document the crucial role of magmatic hydrothermal fluids and their mixing with meteoric water in the formation of the world-class Dongping gold deposit in the North China Craton. Garnet grains from quartz veins of various paragenetic stages and the mineralized alteration envelope at Dongping have dynamic δ 18 O variations of 3.8 to −11.0‰, with large intragrain fluctuations up to 5.3‰. These values correspond to calculated δ 18 O values of 6.1 to −9.1‰ for the hydrothermal fluids from which the garnet formed. The isotope data, notably the cyclic alternation in δ 18 O within individual garnet grains, are best interpreted to reflect multiple pulses of magmatically derived fluids and subsequent mixing of each pulse with variable amounts of meteoric water. The results presented here allow us to quantify the significant interplay between magmatic hydrothermal fluids and meteoric water that spanned the entire mineralization history and triggered gold deposition of a lode gold deposit. This study highlights the potential use of in situ oxygen isotope analysis of garnet in tracing the origin and evolution of hydrothermal fluids in the Earth’s crust that may have formed other giant ore deposits.more » « less
An official website of the United States government
