Sympathetic cooling is a technique often employed to mitigate motional heating in trapped-ion quantum computers. However, choosing system parameters such as number of coolants and cooling duty cycle for optimal gate performance requires evaluating trade-offs between motional errors and other slower errors such as qubit dephasing. The optimal parameters depend on cooling power, heating rate, and ion spacing in a particular system. In this study, we aim to analyze best practices for sympathetic cooling of long chains of trapped ions using analytical and computational methods. We use a case study to show that optimal cooling performance is achieved when coolants are placed at the center of the chain and provide a perturbative upper bound on the cooling limit of a mode given a particular set of cooling parameters. In addition, using computational tools, we analyze the trade-off between the number of coolant ions in a chain and the center-of-mass mode heating rate. We also show that cooling as often as possible when running a circuit is optimal when the qubit coherence time is otherwise long. These results provide a roadmap for how to choose sympathetic cooling parameters to maximize circuit performance in trapped-ion quantum computers using long chains of ions. Published by the American Physical Society2024
more »
« less
Bilayer Crystals of Trapped Ions for Quantum Information Processing
Trapped-ion systems are a leading platform for quantum information processing, but they are currently limited to 1D and 2D arrays, which imposes restrictions on both their scalability and their range of applications. Here, we propose a path to overcome this limitation by demonstrating that Penning traps can be used to realize remarkably clean bilayer crystals, wherein hundreds of ions self-organize into two well-defined layers. These bilayer crystals are made possible by the inclusion of an anharmonic trapping potential, which is readily implementable with current technology. We study the normal modes of this system and discover salient differences compared to the modes of single-plane crystals. The bilayer geometry and the unique properties of the normal modes open new opportunities—in particular, in quantum sensing and quantum simulation—that are not straightforward in single-plane crystals. Furthermore, we illustrate that it may be possible to extend the ideas presented here to realize multilayer crystals with more than two layers. Our work increases the dimensionality of trapped-ion systems by efficiently utilizing all three spatial dimensions, and it lays the foundation for a new generation of quantum information processing experiments with multilayer 3D crystals of trapped ions. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2317149
- PAR ID:
- 10591457
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review X
- Volume:
- 14
- Issue:
- 3
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider optical response in multiband, multilayer two-dimensional superconductors. Within a simple model, we show that linear response to AC gating can detect collective modes of the condensate, such as Leggett and clapping modes. We show how trigonal warping of the superconducting order parameter can help facilitate detection of clapping modes. Taking rhombohedral trilayer graphene as an example, we consider several possible pairing mechanisms and show that all-electronic mechanisms may produce in-gap clapping modes. These modes, if present, should be detectable in the absorption of microwaves applied via the gate electrodes, which are necessary to enable superconductivity in this and many other settings; their detection would constitute strong evidence for unconventional pairing. Last, we show that absorption at frequencies above the superconducting gap also contains a wealth of information about the gap structure. Our results suggest that linear spectroscopy can be a powerful tool for the characterization of unconventional two-dimensional superconductors. Published by the American Physical Society2024more » « less
-
We investigated surface acoustic wave (SAW) propagation and lattice vibrations in two-dimensional (2D) titanium carbide MXene films as a function of surface termination and layer stacking, using atomistic simulations. We found that SAW propagation velocity is highly sensitive to both single-layer properties and interlayer bonding. Surface terminations significantly modulate wave behavior, with oxygen and fluorine terminations producing distinct effects on wave propagation, with oxygen-terminated monolayers exhibiting 20% higher wave speeds than fluorine counterparts due to strengthened intralayer bonds. Key observations include the transition from one to two layers causing wave speed variations, and the development of interlayer modes that generate more dispersed lattice vibrations. As the film layer thickness increases, SAW propagation becomes predominantly confined to the upper surface, with coherence of vibrational modes diminishing in multilayer structures. These findings suggest MXene terminations and layer stacking are crucial parameters for controlling SAW behavior, offering promising avenues for novel acoustic wave device applications. Published by the American Physical Society2025more » « less
-
Modern micromanipulation techniques typically involve trapping using electromagnetic, acoustic, or flow fields that produce stresses on the trapped particles thereby precluding stress-free manipulations. Here, we show that by employing polyhedral symmetries in a multichannel microfluidic design, we can separate the tasks of displacing and trapping a particle into two distinct sets of flow operations, each characterized and protected by their unique groups of symmetries. By combining only the displacing uniform flow modes to entrain and move targeted particles in arbitrary directions, we were able to realize symmetry-protected, stress-free micromanipulation in 3D. Furthermore, we engineered complex, microscale paths by programming and controlling the flow within each channel in real time, resulting in multiple particles simultaneously following desired paths in the absence of any supervision or feedback. Our work therefore provides a general symmetry-group-based framework for understanding and engineering microfluidics and a novel platform for 3D stress-free manipulations. Published by the American Physical Society2024more » « less
-
In recent years, applications of quantum simulation have been developed to study the properties of strongly interacting theories. This has been driven by two factors: on the one hand, needs from theorists to have access to physical observables that are prohibitively difficult to study using classical computing; on the other hand, quantum hardware becoming increasingly reliable and scalable to larger systems. In this work, we discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD and are at the core of the experimental program at Jefferson Laboratory, the future Electron-Ion Collider, and other accelerator facilities. We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates and implementation in a single photonic quantum processor. Published by the American Physical Society2024more » « less
An official website of the United States government

