Entangled matter displays unusual and attractive properties and mechanisms: tensile strength, capabilities for assembly and disassembly, damage tolerance. While some of the attributes and mechanisms share some traits with traditional granular materials, fewer studies have focused on entanglement and strength and there are large gaps in our understanding of the mechanics of these materials. In this report we focus on the tensile properties and mechanics of bundles made of staple-like particles, and particularly on the effect of adjusting the angle between the legs and the crown in individual staples. Our experiments, combined with discrete element models, show competing mechanisms between entanglement strength and geometric engagement between particles, giving rise to an optimum crown-leg angle that maximizes strength. We also show that tensile forces are transmitted by a small fraction of the staples, which is organized in only 1-3 force chains. The formation and breakage of these chains is highly dynamic: as force chains break, they are replaced by fresh ones which were previously mechanically invisible. Entangled matter offers interesting perspectives in terms of materials design which can lead to unusual combination of properties: simultaneous strength and toughness, controlled assembly and disassembly, re-conformability, recyclability.
more »
« less
Tuning geometry in staple-like entangled particles: “pick-up” experiments and Monte Carlo simulations
Abstract Entangled matter provides intriguing perspectives in terms of deformation mechanisms, mechanical properties, assembly and disassembly. However, collective entanglement mechanisms are complex, occur over multiple length scales, and they are not fully understood to this day. In this report, we propose a simple pick-up test to measure entanglement in staple-like particles with various leg lengths, crown-leg angles, and backbone thickness. We also present a new “throw-bounce-tangle” model based on a 3D geometrical entanglement criterion between two staples, and a Monte Carlo approach to predict the probabilities of entanglement in a bundle of staples. This relatively simple model is computationally efficient, and it predicts an average density of entanglement which is consistent with the entanglement strength measured experimentally. Entanglement is very sensitive to the thickness of the backbone of the staples, even in regimes where that thickness is a small fraction (< 0.04) of the other dimensions. We finally demonstrate an interesting use for this model to optimize staple-like particles for maximum entanglement. New designs of tunable “entangled granular metamaterials” can produce attractive combinations of strength, extensibility, and toughness that may soon outperform lightweight engineering materials such as solid foams and lattices.
more »
« less
- Award ID(s):
- 2033991
- PAR ID:
- 10591541
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Granular Matter
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1434-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The design of amorphous entangled systems, specifically from soft and active materials, has the potential to open exciting new classes of active, shape-shifting, and task-capable ‘smart’ materials. However, the global emergent mechanics that arise from the local interactions of individual particles are not well understood. In this study, we examine the emergent properties of amorphous entangled systems in an in silico collection of u-shaped particles (“smarticles”) and in living entangled aggregate of worm blobs ( L. variegatus ). In simulations, we examine how material properties change for a collective composed of smarticles as they undergo different forcing protocols. We compare three methods of controlling entanglement in the collective: external oscillations of the ensemble, sudden shape-changes of all individuals, and sustained internal oscillations of all individuals. We find that large-amplitude changes of the particle's shape using the shape-change procedure produce the largest average number of entanglements, with respect to the aspect ratio ( l / w ), thus improving the tensile strength of the collective. We demonstrate applications of these simulations by showing how the individual worm activity in a blob can be controlled through the ambient dissolved oxygen in water, leading to complex emergent properties of the living entangled collective, such as solid-like entanglement and tumbling. Our work reveals principles by which future shape-modulating, potentially soft robotic systems may dynamically alter their material properties, advancing our understanding of living entangled materials, while inspiring new classes of synthetic emergent super-materials.more » « less
-
Lung cancer claims over 130,000 lives per year in the USA. For those with malignant tumors requiring resection, minimally invasive thoracic surgery via a video assisted or robotic approach is an alternative to highly invasive open thoracotomy (in which the chest is “cracked” open). This involves the insertion of 3-5 ports through the chest wall and the use of a camera and instruments mounted to rigid shafts, which are used to resect tissue in a deflated lung. One of these tools is typically a stapler which is able to simultaneously cut and seal the lung tissue. Tendon-driven continuum robots (TDCRs) are capable of curvilinear motions, which can add useful dexterity in constrained anatomical regions like the chest. However, the inherent flexibility of TDCRs presents challenges for integrating stapler-type end effectors. Lung staplers today are typically rigid tools because they require large axial forces to be transmitted along the tool shaft to fire staples. Such forces would apply large loads to curved continuum devices, changing their shapes and moving the end effector undesirably during staple firing. Low melting point alloys (LMPA) have been explored to stiffen substantially soft robots and compliant surgical devices. Here, we propose their use in a TDCR stapler to stiffen the tool shaft before staples are fired. Prior to stiffening, tendon actuation can provide enhanced maneuverability by curving the backbone compared to rigid staplers to position the stapler at the desired location.more » « less
-
This work presents a new approach for simulating the interaction between molecular aggregate systems and multi-modal energy–time entangled light by solving the Lindblad master equation. The density matrix that describes both molecular and photonic states is propagated on a time grid, with excited-state dephasing included via the Lindblad superoperator. Molecular exciton entanglement, induced by entangled photons, is analyzed from the time-evolved density matrix. The calculations are based on a model of a molecular dimer introduced by Bittner et al. [J. Chem. Phys. 152, 071101 (2020)], along with entangled light that is approximated by a finite number of modes. Our results demonstrate that photonic entanglement plays a significant role in influencing molecular exciton entanglement, highlighting the interplay between the photonic and excitonic subsystems in such interactions.more » « less
-
Abstract Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.more » « less
An official website of the United States government
