Recent reports of a large anomalous Hall effect (AHE) in ferromagnetic Weyl semimetals (FM WSMs) have led to a resurgence of interest in this enigmatic phenomenon. However, due to a lack of tunable materials, the interplay between the intrinsic mechanism caused by Berry curvature and extrinsic mechanisms due to scattering remains unclear in FM WSMs. In this contribution, we present a thorough investigation of both the extrinsic and intrinsic AHEs in a new family of FM WSMs, PrAlGe1−xSix, where x can be tuned continuously. Based on the first-principles calculations, we show that the two end members, PrAlGe and PrAlSi, have different Fermi surfaces, but similar Weyl node structures. Experimentally, we observe moderate changes in the anomalous Hall coefficient (RS), but significant changes in the ordinary Hall coefficient (R0) in PrAlGe1−xSix as a function of x. By comparing the magnitude of R0 and RS, we identify two regimes: |R0| < |RS| for x ≤ 0.5 and |R0| > |RS| for x > 0.5. Through a detailed scaling analysis, we uncover a universal anomalous Hall conductivity (AHC) from intrinsic contribution when x ≤ 0.5. Such a universal AHC is absent for x > 0.5. Our study, thus, reveals the significance of extrinsic mechanisms in FM WSMs and reports the first observation of the transition from the intrinsic to extrinsic AHE in PrAlGe1−xSix.
more »
« less
Bounds and anomalies of inhomogeneous anomalous Hall effects
Abstract It is well recognized that interpreting transport experiment results can be challenging when the samples being measured are spatially nonuniform. However, quantitative understanding on the differences between measured and actual transport coefficients, especially the Hall effects, in inhomogeneous systems is lacking. In this work we use homogenization theory to find exact bounds of the measured or homogenized anomalous Hall conductivity (AHC) in inhomogeneous conductors under minimal assumptions. In particular, we prove that the homogenized AHC cannot exceed the bounds of the local AHC. However, in common experimental setups, anomalies that appear to violate the above bounds can occur, with a popular example being the “humps” or “dips” of the Hall hysteresis curves usually ascribed to the topological Hall effect (THE). We give two examples showing how such apparent anomalies could be caused by different types of inhomogeneities and discuss their relevance in experiments.
more »
« less
- Award ID(s):
- 1945023
- PAR ID:
- 10591839
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Generalizing from previous work on the integer quantum Hall effect, we construct the effective action for the analog of Laughlin states for the fractional quantum Hall effect in higher dimensions. The formalism is a generalization of the parton picture used in two spatial dimensions, the crucial ingredient being the cancellation of anomalies for the gauge fields binding the partons together. Some subtleties which exist even in two dimensions are pointed out. The effective action is obtained from a combination of the Dolbeault and Dirac index theorems. We also present expressions for some transport coefficients such as Hall conductivity and Hall viscosity for the fractional states. Published by the American Physical Society2025more » « less
-
Abstract The interface of common III‐V semiconductors InAs and GaSb can be utilized to realize a two‐dimensional (2D) topological insulator state. The 2D electronic gas at this interface can yield Hall quantization from coexisting electrons and holes. This anomaly is a determining factor in the fundamental origin of the topological state in InAs/GaSb. Here, the coexistence of electrons and holes in InAs/GaSb is tied to the chemical sharpness of the interface. Magnetotransport, in samples of Mn‐doped InAs/GaSb cleaved from wafers grown at a spatially inhomogeneous substrate temperature, is studied. It is reported that the observation of quantum oscillations and a quantized Hall effect whose behavior, exhibiting coexisting electrons and holes, is tuned by this spatial nonuniformity. Through transmission electron microscopy measurements, it is additionally found that samples that host this co‐existence exhibit a chemical intermixing between group III and group V atoms that extends over a larger thickness about the interface. The issue of intermixing at the interface is systematically overlooked in electronic transport studies of topological InAs/GaSb. These findings address this gap in knowledge and shed important light on the origin of the anomalous behavior of quantum oscillations seen in this 2D topological insulator.more » « less
-
Abstract High‐mobility crystalline organic semiconductors are important for applications in advanced organic electronics and photonics. Photogeneration and transport of mobile photocarriers in these materials, although very important, remain underexplored. The photo‐Hall effect can be used to address the fundamental charge transport properties of these functional molecular materials, without the need for fabricating complex transistor devices or chemical doping. Here, a photo‐Hall effect is demonstrated in organic semiconductors, using a benchmark molecular system rubrene as an experimental platform. It is shown that this technique can be used to directly measure the charge carrier mobility and photocarrier density, decouple the surface and bulk transport phenomena, and thus significantly deepen the understanding of the mechanism of photoconductivity in these high‐performance molecular materials.more » « less
-
Abstract Ferroelastic BiVO4has charged surface domains, even though its crystal structure is non‐polar. These charged domains can be detected by piezo‐force microscopy and lead to spatially selective photochemical reactions. The photochemical reactivity of (Bi0.96Na0.04)(V0.92Mo0.08)O4is studied above and below the ferroelastic transition temperature to better understand the origin of charged ferroelastic domains. The results demonstrate that spatially selective reactivity occurs above the ferroelastic transition temperature, similar to what is observed below the transition temperature. Furthermore, when the sample is cooled after brief excursions above the transition temperature, the domains reform with a microstructure that is indistinguishable from what is observed before the transition. The results are consistent with the idea that inhomogeneous distributions of charged point defects, created by stress in the ferroelastic domains, lead to charged domains that promote spatially selective photochemical reactions. If these inhomogeneous defect distributions are not homogenized above the transition temperature, they can template the re‐creation of the original domain microstructure after the transformation back to the ferroelastic phase.more » « less
An official website of the United States government
