Abstract We present a phenomenological and numerical study of strong Alfvénic turbulence in a magnetically dominated collisionless relativistic plasma with a strong background magnetic field. In contrast with the nonrelativistic case, the energy in such turbulence is contained in magnetic and electric fluctuations. We argue that such turbulence is analogous to turbulence in a strongly magnetized nonrelativistic plasma in the regime of broken quasi-neutrality. Our 2D particle-in-cell numerical simulations of turbulence in a relativistic pair plasma find that the spectrum of the total energy has the scalingk−3/2, while the difference between the magnetic and electric energies, the so-called residual energy, has the scalingk−2.4. The electric and magnetic fluctuations at scaleℓexhibit dynamic alignment with the alignment angle scaling close to . At scales smaller than the (relativistic) plasma inertial scale, the energy spectrum of relativistic inertial Alfvén turbulence steepens tok−3.5.
more »
« less
Confinement of relativistic electrons in a magnetic mirror en route to a magnetized relativistic pair plasma
Creating a magnetized relativistic pair plasma in the laboratory would enable the exploration of unique plasma physics relevant to some of the most energetic events in the universe. As a step toward a laboratory pair plasma, we have demonstrated an effective confinement of multi-MeV electrons inside a pulsed-power-driven 13 T magnetic mirror field with a mirror ratio of 2.6. The confinement is diagnosed by measuring the axial and radial losses with magnetic spectrometers. The loss spectra are consistent with ≤2.5 MeV electrons confined in the mirror for ∼1 ns. With a source of 1012 electron-positron pairs at comparable energies, this magnetic mirror would confine a relativistic pair plasma with Lorentz factor γ∼6 and magnetization σ∼40.
more »
« less
- Award ID(s):
- 1751462
- PAR ID:
- 10591884
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Physics of Plasmas
- Volume:
- 28
- Issue:
- 9
- ISSN:
- 1070-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The radiation drag in photon-rich environments of cosmic explosions can seed kinetic instabilities by inducing velocity spreads between relativistically streaming plasma components. Such microturbulence is likely imprinted on the breakout signals of radiation-mediated shocks. However, large-scale, transverse magnetic fields in the deceleration region of the shock transition can suppress the dominant kinetic instabilities by preventing the development of velocity separations between electron–positron pairs and a heavy ion species. We use a 1D five-fluid radiative transfer code to generate self-consistent profiles of the radiation drag force and plasma composition in the deceleration region. For increasing magnetization, our models predict rapidly growing pair multiplicities and a substantial radiative drag developing self-similarly throughout the deceleration region. We extract the critical magnetization parameter σc, determining the limiting magnetic field strength at which a three-species plasma can develop kinetic instabilities before reaching the isotropized downstream. For a relativistic, single ion plasma drifting with γu = 10 in the upstream of a relativistic radiation-mediated shock, we find the threshold σc ≈ 10−7 for the onset of microturbulence. Suppression of plasma instabilities in the case of multi-ion composition would likely require much higher values of σc. Identifying high-energy signatures of microturbulence in shock breakout signals and combining them with the magnetization limits provided in this work will allow a deeper understanding of the magnetic environment of cosmic explosions like supernovae, gamma-ray bursts, and neutron star binary mergers.more » « less
-
Abstract High‐intensity long‐duration continuous auroral electrojet (AE) activity (HILDCAA) events are associated with intensification of relativistic electron fluxes in the inner magnetosphere. The physical mechanisms of this intensification are not well established yet. We study observations by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft in the near earth plasma sheet at radial distances of 10 Earth radii, at the transition region between tail and dipole‐like magnetic configurations, referred to as the nightside transition region (NTR), during a HILDCAA event. The observations revealed recurrent dipolarizations accompanied by plasma flow vortices, impulsive electric field enhancements, and increases in electron fluxes at energies of 100 keV up to 1 MeV. Electron pitch angle (PA) distributions at THEMIS showed field‐aligned flux enhancements at energies of 100 keV. This indicates a Fermi‐type energization. Arguably, electrons gain energy up to MeV via repetitive bouncing through the acceleration region. Energization of ions was insignificant which led to 1. We suggest that the increased ratio leads to a local increase of the Hall conductivity in the conjugate ionosphere, which causes ionospheric current intensification and strong , consistent with observations.more » « less
-
Abstract Following the largest magnetic storm in 20 years (10 May 2024), REPTile‐2 on NASA's CIRBE satellite identified two new radiation belts containing 1.3–5 MeV electrons aroundL = 2.5–3.5 and 6.8–20 MeV protons aroundL = 2. The region aroundL = 2.5–3.5 is usually devoid of relativistic electrons due to wave‐particle interactions that scatter them into the atmosphere. However, these 1.3–5 MeV electrons in this new belt seemed unaffected until a magnetic storm on 28 June 2024, perturbed the region. The long‐lasting nature of this new electron belt has physical implications for the dependence of electron wave‐particle interactions on energy, plasma density, and magnetic field strength. The enhancement of protons aroundL = 2 exceeded an order of magnitude between 6.8 and 15 MeV forming a distinct new proton belt that appears even more stable. CIRBE, after a year of successful operation, malfunctioned 25 days before the super storm but returned to functionality 1 month after the storm, enabling these discoveries.more » « less
-
Abstract Certain forms of solar wind transients contain significant enhancements of dynamic pressure and may effectively drive magnetosphere dynamics, including substorms and storms. An integral element of such driving is the generation of a wide range of electromagnetic waves within the inner magnetosphere, either by compressionally heated plasma or by substorm plasma sheet injections. Consequently, solar wind transient impacts are traditionally associated with energetic electron scattering and losses into the atmosphere by electromagnetic waves. In this study, we show the first direct measurements of two such transient‐driven precipitation events as measured by the low‐altitude Electron Losses and Fields Investigation CubeSats. The first event demonstrates storm‐time generated electromagnetic ion cyclotron waves efficiently precipitating sub‐relativistic and relativistic electrons from >300 keV to 2 MeV at the duskside. The second event demonstrates whistler‐mode waves leading to scattering of electrons from 50 to 700 keV on the dawnside. These observations confirm the importance of solar wind transients in driving energetic electron losses and subsequent dynamics in the ionosphere.more » « less
An official website of the United States government
