A model designed to mimic the implications of the collective optical response of molecular ensembles in optical cavities on molecular vibronic dynamics is investigated. Strong molecule–radiation field coupling is often reached when a large number N of molecules respond collectively to the radiation field. In electronic strong coupling, molecular nuclear dynamics following polariton excitation reflects (a) the timescale separation between the fast electronic and photonic dynamics and the slow nuclear motion on one hand and (b) the interplay between the collective nature of the molecule–field coupling and the local nature of the molecules nuclear response on the other. The first implies that the electronic excitation takes place, in the spirit of the Born approximation, at an approximately fixed nuclear configuration. The second can be rephrased as the intriguing question of whether the collective nature of optical excitation leads to collective nuclear motion following polariton formation resulting in so-called polaron decoupled dynamics. We address this issue by studying the dynamical properties of a simplified Holstein–Tavis–Cummings-type model, in which boson modes representing molecular vibrations are replaced by two-level systems, while the boson frequency and the vibronic coupling are represented by the coupling between these levels (that induces Rabi oscillations between them) and electronic state dependence of this coupling. We investigate the short-time behavior of this model following polariton excitation as well as its response to CW driving and its density of states spectrum. We find that, while some aspects of the dynamical behavior appear to adhere to the polaron decoupling picture, the observed dynamics mostly reflect the local nature of the nuclear configuration of the electronic polariton rather than this picture.
more »
« less
Cavity Born–Oppenheimer approximation for molecules and materials via electric field response
We present an ab initio method for computing vibro-polariton and phonon-polariton spectra of molecules and solids coupled to the photon modes of optical cavities. We demonstrate that if interactions of cavity photon modes with both nuclear and electronic degrees of freedom are treated on the level of the cavity Born–Oppenheimer approximation, spectra can be expressed in terms of the matter response to electric fields and nuclear displacements, which are readily available in standard density functional perturbation theory implementations. In this framework, results over a range of cavity parameters can be obtained without the need for additional electronic structure calculations, enabling efficient calculations on a wide range of parameters. Furthermore, this approach enables results to be more readily interpreted in terms of the more familiar cavity-independent molecular electric field response properties, such as polarizability and Born effective charges, which enter into the vibro-polariton calculation. Using corresponding electric field response properties of bulk insulating systems, we are also able to obtain the Γ point phonon-polariton spectra of two dimensional (2D) insulators. Results for a selection of cavity-coupled molecular and 2D crystal systems are presented to demonstrate the method.
more »
« less
- Award ID(s):
- 2112550
- PAR ID:
- 10592334
- Publisher / Repository:
- J. Chem. Phys.
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 161
- Issue:
- 15
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The standard description of cavity-modified molecular reactions typically involves a single (resonant) mode, while in reality, the quantum cavity supports a range of photon modes. Here, we demonstrate that as more photon modes are accounted for, physicochemical phenomena can dramatically change, as illustrated by the cavity-induced suppression of the important and ubiquitous process of proton-coupled electron-transfer. Using a multi-trajectory Ehrenfest treatment for the photon-modes, we find that self-polarization effects become essential, and we introduce the concept of self-polarization-modified Born–Oppenheimer surfaces as a new construct to analyze dynamics. As the number of cavity photon modes increases, the increasing deviation of these surfaces from the cavity-free Born–Oppenheimer surfaces, together with the interplay between photon emission and absorption inside the widening bands of these surfaces, leads to enhanced suppression. The present findings are general and will have implications for the description and control of cavity-driven physical processes of molecules, nanostructures, and solids embedded in cavities.more » « less
-
We develop a microscopic diagrammatic theory for cavity-mediated photon scattering in a topological one-dimensional insulator described by the Su–Schrieffer–Heeger model. Within the velocity-gauge formulation, we derive the photon self-energy and vertex corrections arising from virtual electron–hole excitations coupled to a quantized cavity mode, and we evaluate the resulting polariton dispersion and two-photon correlation spectra. Our analysis shows that vacuum fluctuations of the cavity field induce a momentum-resolved self-energy that mixes conduction and valence bands through virtual photon exchange, producing interband hybridization and avoided crossings in the electronic dispersion. This “cavity dressing” is symmetry-dependent, vanishing at the Brillouin-zone edge where the dipole matrix element is zero, and its strength is controlled by the spatial coherence range ζ≈(lc/a)2 of virtual excitations. We further examine how the cavity modifies nonlinear optical observables, including the Kerr nonlinearity and biphoton spectral entanglement, and identify the regimes where these effects become sensitive to the underlying topological phase. The theoretical framework established here provides a unified description of light–matter coupling in topological and polaritonic systems, bridging solid-state cavity QED with the emerging field of cavity-modified quantum materials. Our results suggest that engineered photonic environments can coherently reshape the electronic landscape of topological insulators, offering new routes to control collective electronic and optical phenomena through vacuum-field fluctuations.more » « less
-
Abstract Coherence delocalization has been investigated on a coupled‐cavity molecular polariton platform in time, frequency, and spatial domains, enabled by ultrafast two‐dimensional infrared hyperspectral imaging. Unidirectional coherence delocalization (coherence prepared in one cavity transferred to another cavity) has been observed in frequency and real space. This directionality is enabled by the dissipation of delocalized photon from high‐energy to low‐energy modes, described by Lindblad dynamics. Further experiments show that when coherences are directly prepared between polaritons from different cavities, only energetically nearby polaritons can form coherences that survive the long‐range environmental fluctuation. Together with the Lindblad dynamics, this result implies that coherences delocalize through a one‐step mechanism where photons transfer from one cavity to another, shedding light to coherence evolution in natural and artificial quantum systems. This new optical platform based on molecular vibrational polariton thus demonstrates a way of combining photon and molecular modes to simulate coherence dynamics in the infrared regime.more » « less
-
Polariton chemistry exploits the strong interaction between quantized excitations in molecules and quantized photon states in optical cavities to affect chemical reactivity. Molecular polaritons have been experimentally realized by the coupling of electronic, vibrational, and rovibrational transitions to photon modes, which has spurred a tremendous theoretical effort to model and explain how polariton formation can influence chemistry. This tutorial review focuses on computational approaches for the electronic strong coupling problem through the combination of familiar techniques from ab initio electronic structure theory and cavity quantum electrodynamics, toward the goal of supplying predictive theories for polariton chemistry. Our aim is to emphasize the relevant theoretical details with enough clarity for newcomers to the field to follow, and to present simple and practical code examples to catalyze further development work.more » « less
An official website of the United States government

