Ni–Mn–Ga Heusler alloys are multifunctional materials that demonstrate macroscopic strain under an externally applied magnetic field through the motion of martensite twin boundaries within the microstructure. This study sought to comprehensively characterize the microstructural, mechanical, thermal, and magnetic properties near the solidus in binder-jet 3D printed 14M Ni50Mn30Ga20. Neutron diffraction data were analyzed to identify the martensite modulation and observe the grain size evolution in samples sintered at temperatures of 1080 °C and 1090 °C. Large clusters of high neutron-count pixels in samples sintered at 1090 °C were identified, suggesting Bragg diffraction of large grains (near doubling in size) compared to 1080 °C sintered samples. The grain size was confirmed through quantitative stereology of polished surfaces for differently sintered and heat-treated samples. Nanoindentation testing revealed a greater resistance to plasticity and a larger elastic modulus in 1090 °C sintered samples (relative density ~95%) compared to the samples sintered at 1080 °C (relative density ~80%). Martensitic transformation temperatures were lower for samples sintered at 1090 °C than 1080 °C, though a further heat treatment step could be added to tailor the transformation temperature. Microstructurally, twin variants ≤10 μm in width were observed and the presence of magnetic anisotropy was confirmed through magnetic force microscopy. This study indicates that a 10 °C sintering temperature difference can largely affect the microstructure and mechanical properties (including elastic modulus and hardness) while still allowing for the presence of magnetic twin variants in the resulting modulated martensite. 
                        more » 
                        « less   
                    This content will become publicly available on June 1, 2026
                            
                            Elucidation of the Nano-Mechanical Property Evolution of 3D-Printed Zirconia
                        
                    
    
            Understanding the mechanical properties of three-dimensional (3D)-printed ceramics while keeping the parts intact is crucial for advancing their application in high-performance and biocompatible fields, such as biomedical and aerospace engineering. This study uses non-destructive nanoindentation techniques to investigate the mechanical performance of 3D-printed zirconia across pre-conditioned and sintered states. Vat photopolymerization-based additive manufacturing (AM) was employed to fabricate zirconia samples. The structural and mechanical properties of the printed zirconia samples were explored, focusing on hardness and elastic modulus variations influenced by printing orientation and post-processing conditions. Nanoindentation data, analyzed using the Oliver and Pharr method, provided insights into the elastic and plastic responses of the material, showing the highest hardness and elastic modulus in the 0° print orientation. The microstructural analysis, conducted via scanning electron microscopy (SEM), illustrated notable changes in grain size and porosity, emphasizing the influencing of the printing orientation and thermal treatment on material properties. This research uniquely investigates zirconia’s mechanical evolution at the nanoscale across different processing stages—pre-conditioned and sintered—using nanoindentation. Unlike prior studies, which have focused on bulk mechanical properties post-sintering, this work elucidates how nano-mechanical behavior develops throughout additive manufacturing, bridging critical knowledge gaps in material performance optimization. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2204750
- PAR ID:
- 10592366
- Publisher / Repository:
- Micro
- Date Published:
- Journal Name:
- Micro
- Volume:
- 5
- Issue:
- 2
- ISSN:
- 2673-8023
- Page Range / eLocation ID:
- 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            One critical challenge for commercial products manufactured via material extrusion 3D printing is their inferior mechanical properties in comparison to injection molding; in particular, 3D printing leads to weaker properties perpendicular to the plane of the printed roads (z-direction). Here, rapid (≤20 s) post-processing of 3D printed carbon- poly(ether ether ketone) (PEEK) with microwaves is demonstrated to dramatically increase the modulus, such that the z-direction after microwave processing (2.7–3.8 GPa) exhibits a higher elastic modulus than the maximum in any direction for the as-printed part (2.3 GPa). Additionally, the stress at break in the z-orientation is increased by an order of magnitude by microwaves to slign with the stress for other print orientations in the as-printed state. The rapid heating and cooling by coupling of the microwave energy with the carbon filler in the PEEK does not increase the crystallinity of the PEEK, so the increased mechanical properties are attributed to improved interfaces between printed roads. This simple microwave post-processing enables large increases in the elastic modulus of the printed parts and can be tuned by the microwave power. As PEEK is generally difficult to print, these concepts can likely be applied to other commercial engineering plastic filaments that contain carbon or other fillers that are microwave active to rapidly post process 3D printed thermoplastics without requiring modification of the filament with selective placement of microwave absorbers. Additionally, these results demonstrate that the average crystallinity does not necessarily correlate with the strength of 3D printed semicrystalline plastics due to the importance of the details of the interface between adjacent printed roads.more » « less
- 
            Additive manufacturing has provided the ability to manufacture complex structures using a wide variety of materials and geometries. Structures such as triply periodic minimal surface (TPMS) lattices have been incorporated into products across many fields due to their unique combinations of mechanical, geometric, and physical properties. Yet, the near limitless possibility of combining geometry and material into these lattices leaves much to be discovered. This article provides a dataset of experimentally gathered tensile stress-strain curves and measured porosity values for 389 unique gyroid lattice structures manufactured using vat photopolymerization 3D printing. The lattice samples were printed from one of twenty different photopolymer materials available from either Formlabs, LOCTITE AM, or ETEC that range from strong and brittle to elastic and ductile and were printed on commercially available 3D printers, specifically the Formlabs Form2, Prusa SL1, and ETEC Envision One cDLM Mechanical. The stress-strain curves were recorded with an MTS Criterion C43.504 mechanical testing apparatus and following ASTM standards, and the void fraction or “porosity” of each lattice was measured using a calibrated scale. This data serves as a valuable resource for use in the development of novel printing materials and lattice geometries and provides insight into the influence of photopolymer material properties on the printability, geometric accuracy, and mechanical performance of 3D printed lattice structures. The data described in this article was used to train a machine learning model capable of predicting mechanical properties of 3D printed gyroid lattices based on the base mechanical properties of the printing material and porosity of the lattice in the research article [1].more » « less
- 
            3D printing of thermoplastics through local melting and deposition via Material Extrusion Additive Manufacturing provides a simple route to the near net-shape manufacture of complex objects. However, the mechanical properties resulting from these 3D printed structures tend to be inferior when compared to traditionally manufactured thermoplastics. These unfavorable characteristics are generally attributed to the structure of the interface between printed roads. Here, we illustrate how the molecular mass distribution for a model thermoplastic, poly(methyl methacrylate) (PMMA), can be tuned to enhance the Young’s modulus of 3D printed plastics. Engineering the molecular mass distribution alters the entanglement density, which controls the strength of the PMMA in the solid state and the chain diffusion in the melt. Increasing the low molecular mass tail increases Young’s modulus and ultimate tensile strength of the printed parts. These changes in mechanical properties are comparable to more complex routes previously reported involving new chemistry or nanoparticles. Controlling the molecular mass distribution provides a simple route to improve the performance in 3D printing of thermoplastics that can be as effective as more complex approaches.more » « less
- 
            Abstract Beta-tricalcium phosphate (β-TCP)-based bioinks were developed to support direct-ink 3D printing-based manufacturing of macroporous scaffolds. Binding of the gelatin:β-TCP ink compositions was optimized by adding carboxymethylcellulose (CMC) to maximize the β-TCP content while maintaining printability. Post-sintering, the gelatin:β-TCP:CMC inks resulted in uniform grain size, uniform shrinkage of the printed structure, and included microporosity within the ceramic. The mechanical properties of the inks improved with increasing β-TCP content. The gelatin:β-TCP:CMC ink (25:75 gelatin:β-TCP and 3% CMC) optimized for mechanical strength was used to 3D print several architectures of macroporous scaffolds by varying the print nozzle tip diameter and pore spacing during the 3D printing process (compressive strength of 13.1 ± 2.51 MPa and elastic modulus of 696 ± 108 MPa was achieved). The sintered, macroporous β-TCP scaffolds demonstrated both high porosity and pore size but retained mechanical strength and stiffness compared to macroporous, calcium phosphate ceramic scaffolds manufactured using alternative methods. The high interconnected porosity (45–60%) and fluid conductance (between 1.04 ×10 −9 and 2.27 × 10 −9 m 4 s/kg) of the β-TCP scaffolds tested, and the ability to finely tune the architecture using 3D printing, resulted in the development of novel bioink formulations and made available a versatile manufacturing process with broad applicability in producing substrates suitable for biomedical applications.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
