skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Survey on Packet Filtering
Packet filtering has remained a key network monitoring primitive over decades, even as networking has continuously evolved. In this article we present the results of a survey we ran to collect data from the networking community, including researchers and practitioners, about how packet filtering is used. In doing so, we identify pain points related to packet filtering, and unmet needs of survey participants. Based on analysis of this survey data, we propose future research and development goals that would support the networking community.  more » « less
Award ID(s):
2319959 2346499
PAR ID:
10592444
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM SIGCOMM Computer Communication Review
Volume:
54
Issue:
3
ISSN:
0146-4833
Page Range / eLocation ID:
2 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wide Area Measurement Systems (WAMS) use an underlying communication network to collect and analyze data from devices in the power grid, aimed to improve grid operations. For WAMS to be effective, the communication network needs to support low packet latency and low packet losses. Internet Protocol (IP), the pervasive technology used in today’s communication networks uses loop-free best-paths for data forwarding, which increases the load on these paths causing delays and losses in delivery. Information-Centric Networking (ICN), a new networking paradigm, designed to enable a data-centric information sharing, natively supports the concurrent use of multiple transmission interfaces, in-networking caching, as well as per-packet security and can provide better application support. In this paper, we present , an ICN-based network architecture for wide area smart grid communications. We demonstrate through simulations that achieves low latency and 100% data delivery even during network congestion by leveraging multiple available paths; thus significantly improving communication resiliency in comparison to an IP-based approach. can be used immediately on today’s Internet as an overlay. 
    more » « less
  2. null (Ed.)
    To keep up with demand, servers will scale up to handle hundreds of thousands of clients simultaneously. Much of the focus of the community has been on scaling servers in terms of aggregate traffic intensity (packets transmitted per second). However, bottlenecks caused by the increasing number of concurrent clients, resulting in a large number of concurrent flows, have received little attention. In this work, we focus on identifying such bottlenecks. In particular, we define two broad categories of problems; namely, admitting more packets into the network stack than can be handled efficiently, and increasing per-packet overhead within the stack. We show that these problems contribute to high CPU usage and network performance degradation in terms of aggregate throughput and RTT. Our measurement and analysis are performed in the context of the Linux networking stack, the most widely used publicly available networking stack. Further, we discuss the relevance of our findings to other network stacks. The goal of our work is to highlight considerations required in the design of future networking stacks to enable efficient handling of large numbers of clients and flows 
    more » « less
  3. K-12 engineering outreach has typically focused on elementary electrical and mechanical engineering or robot experiments integrated in science or math classes. In contrast, we propose a novel outreach program focusing on communication network principles that enable the ubiquitous web and smart-phone applications. We design outreach activities that illustrate the communication network principles through activities and team competitions in physical education (PE) as well as story writing and cartooning in English Language Arts (ELA) classes. The PE activities cover the principles of store-and-forward packet switching, Hypertext Transfer Protocol (HTTP) web page download, connection establishment in cellular wireless networks, as well as packet routing in Software-Defined Networking (SDN). The proposed outreach program has been formatively evaluated by K-12 teachers. A survey for the evaluation of the impact of the outreach program on the student perceptions, specifically, the students' interest, self-efficacy, utility, and negative stereotype perceptions towards communication network engineering, is also presented. 
    more » « less
  4. Traditionally, network monitoring and analytics systems rely on aggregation (e.g., flow records) or sampling to cope with high packet rates. This has the downside that, in doing so, we lose data granularity and accu- racy, and, in general, limit the possible network analytics we can perform. Recent proposals leveraging software- defined networking or programmable hardware provide more fine-grained, per-packet monitoring but are still based on the fundamental principle of data reduction in the network, before analytics. In this paper, we pro- vide a first step towards a cloud-scale, packet-level mon- itoring and analytics system based on stream processing entirely in software. Software provides virtually unlim- ited programmability and makes modern ( e.g.,machine-learning) network analytics applications possible. We identify unique features of network analytics applica- tions which enable the specialization of stream process- ing systems. As a result, an evaluation with our pre- liminary implementation shows that we can scale up to several million packets per second per core and together with load balancing and further optimizations, the vision of cloud-scale per-packet network analytics is possible. 
    more » « less
  5. Full-system simulation of computer systems is critical for capturing the complex interplay between various hard-ware and software components in future systems. Modeling the network subsystem is indispensable for the fidelity of full-system simulations due to the increasing importance of scale-out systems. Over the last decade, the network software stack has undergone major changes, with userspace networking stacks and data-plane networks rapidly replacing the conventional kernel network stack. Nevertheless, the current state-of-the-art architectural simulator, gem5, still employs kernel networking, which precludes realistic network application scenarios. In this work, we first demonstrate the limitations of gem5's current network stack in achieving high network bandwidth. Then, we enable a userspace networking stack on gem5. We extend gem5's NIC hardware model and device driver to sup-port userspace device drivers running the DPDK framework. Additionally, we implement a network load generator hardware model in gem5 to generate various traffic patterns and per-form per-packet timestamp and latency measurements without introducing packet loss. We develop a suite of six network-intensive benchmarks for stress testing the host network stack. These applications, based on DPDK, can run on both gem5 and real systems. Our experimental results show that enabling userspace networking improves gem5's network bandwidth by 6.3× compared with the current Linux kernel software stack. We characterize the performance of DPDK benchmarks running on both a real system and gem5, and evaluate the sensitivity of the applications to various system and microarchitecture parameters. This work marks the first step in refactoring the networking subsystem in gem5. 
    more » « less