Reinforcing fillers are necessary in rubber compounding to aid in enhancing the mechanical properties of the compound for various applications. Carbon black (CB) is currently the most common reinforcing filler used in tire compounding. Lignin, an amorphous polyphenolic material derived from plants and a by-product of the pulp and paper industry, is also an attractive material that can serve as a dispersant and as a reinforcing filler. This paper evaluates the interactions between styrene-butadiene rubber and reinforcing fillers with an electron-rich π- system, such as lignin and CB, in the presence of a graft copolymer (PB-g-PPFS) of PB and electron-deficient 2,3,4,5,6-pentafluorostyrene (PFS). The interactions are attributed to areneperfluoroarene interactions between the electron-deficient π-system of the polyperfluoroarene grafts and the electron-rich π-system of lignin and/or CB particles. The effects of improved fillerrubber interactions on mechanical properties and dynamic mechanical properties are analyzed. This paper will demonstrate the use of PB-g-PPFS as a coupling agent in rubber compounds to enhance the interaction between the filler, lignin and lignin-carbon black hybrid filler, and the rubber matrix to achieve a reduction in the hysteresis loss and enhanced filler dispersion.
more »
« less
This content will become publicly available on March 28, 2026
Improvement of Carbon Black Dispersion in Mussel-Inspired Composites from Epoxidized Natural Rubber Using Aromatic Interactions
A mussel-inspired mechanism was used to solve the problem of filler aggregation in rubber composites. This research aims to improve carbon black (CB) dispersion in epoxidized natural rubber (ENR) composites through π−π stacking and cation−π interactions by adding dopamine (D). In this study, various aromatic interactions (π−π stacking and cation−π interactions) between the D-functionalized ENR molecules and the surface of the CB were observed by Fourier transform infrared (FTIR) and Raman spectroscopy. Notably, the small and wideangle X-ray scattering (SAXS/WAXS) analyses supported our inference from the rubber processing analysis (RPA) and transmission electron microscopy (TEM) results that the aromatic interactions enhanced the CB dispersion in ENR composites. This phenomenon improved the tensile strength (138%), Young’s modulus (93%), and energy-saving properties (50%). Finally, this research provided an alternative strategy using mussel-inspired material to solve the CB aggregation problem in rubber products, yielding ENR composites with superior performance properties.
more »
« less
- Award ID(s):
- 1933487
- PAR ID:
- 10592658
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Applied Polymer Materials
- Volume:
- 7
- Issue:
- 6
- ISSN:
- 2637-6105
- Page Range / eLocation ID:
- 3576 to 3587
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Organic photovoltaics have achieved breakthroughs in power conversion efficiency due to the superior aggregation and packing nature of non‐fullerene acceptors (NFAs). Solution processing and various treatments would tend to form distinct packing motifs for state‐of‐the‐art NFAs. Herein, the solvent‐induced polymorphism for 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophne) (ITIC) prepared by chloroform (CF) and chlorobenzene (CB) is revealed. The packing motif of ITIC exhibits dense π–π stacking from CF induction, which presents red‐shifted absorption and reversible high‐temperature crystallization and melting. Meanwhile, strong lamellar stacking and π–π stacking can be formed in the CB solution with unstable low‐temperature crystallization and melting. Combining in situ absorption spectra and interaction calculation, the stronger preaggregation of ITIC in the CF solution was found to be the main reason for forming a different packing motif from in the CB solution. The packing and thermodynamic features are retained in the PBDB‐T:ITIC blends, though good miscibility weakens characteristic features. Benefiting from the polymorph structure, CB‐processed devices denote more favorable performance but less thermal stability. This research indicates the significant effect of solvent induction for manipulating and optimizing the morphology of organic solar cell devices.more » « less
-
Abstract Understanding thermal transport mechanisms in polymeric composites allows us to expand the boundaries of thermal conductivity in them, either increasing it for more efficient heat dissipation or decreasing it for better thermal insulation. But, these mechanisms are not fully understood. Systematic experimental investigations remain limited. Practical strategies to tune the interfacial thermal resistance (ITR) between fillers and polymers and the thermal conductivity of composites remain elusive. Here, we studied the thermal transport in representative polymer composites, using polyethylene (PE) or polyaniline (PANI) as matrices and graphite as fillers. PANI, with aromatic rings in its backbone, interacts with graphite through strong noncovalent π–π stacking interactions, whereas PE lacks such interactions. We can then quantify how π–π stacking interactions between graphite and polymers enhance thermal transport in composites. PE/graphite and PANI/graphite composites with the same 1.5% filler volume fractions show a ∼22.82% and ∼34.85% enhancement in thermal conductivity compared to pure polymers, respectively. Calculated ITRs in PE/graphite and PANI/graphite are ∼6×10−8 m2 K W−1 and ∼1×10−8 m2 K W−1, respectively, highlighting how π–π stacking interactions reduce ITR. Molecular dynamics (MD) simulations suggest that π–π stacking interactions between PANI chains and graphite surfaces enhance alignment of PANI's aromatic rings with graphite surfaces. This allows more carbon atoms from PANI chains to interact with graphite surfaces at a shorter distance compared to PE chains. Our work indicates that tuning the π–π stacking interactions between polymers and fillers is an effective approach to reduce the ITR and enhance the thermal conductivity of composites.more » « less
-
Abstract Designing complex synthetic materials for enzyme immobilization could unlock the utility of biocatalysis in extreme environments. Inspired by biology, we investigate the use of random copolymer brushes as dynamic immobilization supports that enable supra-biological catalytic performance of immobilized enzymes. This is demonstrated by immobilizingBacillus subtilisLipase A on brushes doped with aromatic moieties, which can interact with the lipase through multiple non-covalent interactions. Incorporation of aromatic groups leads to a 50 °C increase in the optimal temperature of lipase, as well as a 50-fold enhancement in enzyme activity. Single-molecule FRET studies reveal that these supports act as biomimetic chaperones by promoting enzyme refolding and stabilizing the enzyme’s folded and catalytically active state. This effect is diminished when aromatic residues are mutated out, suggesting the importance of π-stacking and π-cation interactions for stabilization. Our results underscore how unexplored enzyme-support interactions may enable uncharted opportunities for using enzymes in industrial biotransformations.more » « less
-
The title salt, C 4 H 6 N 3 O 2 + ·Cl − , exhibits multiple hydrogen-bonding interactions involving the nitroimidazolium cation and the chloride anion. Strong hydrogen bonds between the amine hydrogen atom and the chloride anion link the ionic moieties. Of note, with respect to H...Cl interactions, the central aromatic hydrogen atom displays a shorter interaction than the other aromatic hydrogen atom. Finally, interactions are observed between the nitro moiety and methyl H atoms. While no π–π stacking is observed, anion-π interactions are present. The crystal was refined as a two-component twin.more » « less
An official website of the United States government
