skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Average Rényi entanglement entropy in Gaussian boson sampling
Recently, many experiments have been conducted with the goal of demonstrating a quantum advantage over classical computation. One popular framework for these experiments is Gaussian boson sampling, where quadratic photonic input states are interfered via a linear optical unitary and subsequently measured in the Fock basis. In this paper, we study the modal entanglement of the output states in this framework just before the measurement stage. Specifically, we compute Page curves as measured by various Rényi- α entropies, where the Page curve describes the entanglement between two partitioned groups of output modes averaged over all linear optical unitaries. We derive these formulas for α = 1 (i.e., the von Neumann entropy) and, more generally, for all positive integer α , in the asymptotic limit of infinite number of modes and for input states that are composed of single-mode-squeezed-vacuum state with equal squeezing strength. We then analyze the limiting behaviors when the squeezing is small and large. Having determined the averages, we then explicitly calculate the Rényi- α variance for integers α > 1 and are able to show that these entropies are weakly typical. Published by the American Physical Society2025  more » « less
Award ID(s):
2120757
PAR ID:
10592854
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Physical Review Research
Date Published:
Journal Name:
Physical review research
Volume:
7
Issue:
2
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The strong coupling of atoms to optical cavities can improve optical lattice clocks as the cavity enables metrologically useful collective atomic entanglement and high-fidelity measurement. To this end, it is necessary to cool the ensemble to suppress motional broadening, and advantageous to maximize and homogenize the atom-cavity coupling. We demonstrate resolved Raman sideband cooling via the cavity as a method that can simultaneously achieve both goals. In 200 ms of Raman sideband cooling, we cool Yb 171 atoms to an average vibration number n x = 0.23 ( 7 ) in the tightly binding direction, resulting in 93 % optical π -pulse fidelity on the clock transition S 0 1 P 0 3 . During cooling, the atoms self-organize into locations with maximal atom-cavity coupling, which will improve quantum metrology applications. Published by the American Physical Society2024 
    more » « less
  2. Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s = 13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb 1 . The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: α S ( m Z ) = 0.122 9 0.0050 + 0.0040 , the most precise α S ( m Z ) value obtained using jet substructure observables. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less
  3. Highly excited Rydberg states and their interactions play an important role in quantum computing and simulation. These properties can be predicted accurately for alkali atoms with simple Rydberg level structures. However, an extension of these methods to more complex atoms such as alkaline-earth atoms has not been demonstrated or experimentally validated. Here, we present multichannel quantum defect models for highly excited Yb 174 and Yb 171 Rydberg states with L 2 . The models are developed using a combination of existing literature data and new, high-precision laser and microwave spectroscopy in an atomic beam, and validated by detailed comparison with experimentally measured Stark shifts and magnetic moments. We then use these models to compute interaction potentials between two Yb atoms, and find excellent agreement with direct measurements in an optical tweezer array. From the computed interaction potential, we identify an anomalous Förster resonance that likely degraded the fidelity of previous entangling gates in Yb 171 using F = 3 / 2 Rydberg states. We then identify a more suitable F = 1 / 2 state, and achieve a state-of-the-art controlled- gate fidelity of F = 0.994 ( 1 ) , with the remaining error fully explained by known sources. This work establishes a solid foundation for the continued development of quantum computing, simulation, and entanglement-enhanced metrology with Yb neutral atom arrays. Published by the American Physical Society2025 
    more » « less
  4. We consider optical response in multiband, multilayer two-dimensional superconductors. Within a simple model, we show that linear response to AC gating can detect collective modes of the condensate, such as Leggett and clapping modes. We show how trigonal warping of the superconducting order parameter can help facilitate detection of clapping modes. Taking rhombohedral trilayer graphene as an example, we consider several possible pairing mechanisms and show that all-electronic mechanisms may produce in-gap clapping modes. These modes, if present, should be detectable in the absorption of microwaves applied via the gate electrodes, which are necessary to enable superconductivity in this and many other settings; their detection would constitute strong evidence for unconventional pairing. Last, we show that absorption at frequencies above the superconducting gap 2 | Δ | also contains a wealth of information about the gap structure. Our results suggest that linear spectroscopy can be a powerful tool for the characterization of unconventional two-dimensional superconductors. Published by the American Physical Society2024 
    more » « less
  5. Massive scalar fields are promising candidates for addressing many unresolved problems in fundamental physics. We report the first model-agnostic Bayesian search of massive scalar fields that are nonminimally coupled to gravity in LIGO/Virgo/KAGRA gravitational-wave data. We find no evidence for such fields and place the most stringent upper limits on their coupling for scalar masses 2 × 10 12 eV . We exemplify the strength of these bounds by applying them to massive scalar-Gauss-Bonnet gravity, finding the tightest constraints on the coupling constant to date, α GB 1 km for scalar masses 10 13 eV to 90% credible level. Published by the American Physical Society2025 
    more » « less