Integrated photonic microresonators have become an essential resource for generating photonic qubits for quantum information processing, entanglement distribution and networking, and quantum communications. The pair-generation rate is enhanced by reducing the microresonator radius, but this comes at the cost of increasing the frequency-mode spacing and reducing the quantum information spectral density. Here, we circumvent this rate-density trade-off in an -on-insulator photonic device by multiplexing an array of 20 small-radius microresonators, each producing a 650-GHz-spaced comb of time-energy entangled-photon pairs. The resonators can be independently tuned via integrated thermo-optic heaters, enabling control of the mode spacing from degeneracy up to a full free spectral range. We demonstrate simultaneous pumping of five resonators with up to -GHz relative comb offsets, where each resonator produces pairs exhibiting time-energy entanglement visibilities up to , coincidence-to-accidental ratios exceeding , and an on-chip pair rate up to per comb line—an improvement over prior work by more than a factor of 40. As a demonstration, we generate frequency-bin qubits in a maximally entangled two-qubit Bell state with fidelity exceeding ( with background correction) and detected frequency-bin entanglement rates up to 7 kHz (an approximately MHz on-chip pair rate) using a pump power of approximately . Multiplexing small-radius microresonators combines the key capabilities required for programmable and dense photonic qubit encoding while retaining high pair-generation rates, heralded single-photon purity, and entanglement fidelity. Published by the American Physical Society2025
more »
« less
This content will become publicly available on December 1, 2025
Approximate t -Designs in Generic Circuit Architectures
Unitary -designs are distributions on the unitary group whose first moments appear maximally random. Previous work has established several upper bounds on the depths at which certain specific random quantum circuit ensembles approximate -designs. Here we show that these bounds can be extended to any fixed architecture of Haar-random two-site gates. This is accomplished by relating the spectral gaps of such architectures to those of one-dimensional brickwork architectures. Our bound depends on the details of the architecture only via the typical number of layers needed for a block of the circuit to form a connected graph over the sites. When this quantity is bounded, the circuit forms an approximate -design in at most linear depth. We give numerical evidence for a stronger bound that depends only on the number of connected blocks into which the architecture can be divided. We also give an implicit bound for nondeterministic architectures in terms of properties of the corresponding distribution over fixed architectures. Published by the American Physical Society2024
more »
« less
- Award ID(s):
- 2016136
- PAR ID:
- 10593065
- Publisher / Repository:
- PRX Quantum
- Date Published:
- Journal Name:
- PRX Quantum
- Volume:
- 5
- Issue:
- 4
- ISSN:
- 2691-3399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wurtzite ferroelectrics are attractive for microelectronics applications due to their chemical and structural compatibility with wurtzite semiconductors, such as and . However, the leakage current in epitaxial stacks reported to date should be reduced for reliable device operation. Here, we demonstrate low leakage current in epitaxial films on with well-saturated ferroelectric hysteresis loops that are orders of magnitude lower (i.e., 0.07 A ) than previously reported films (1–19 A ) having similar or better structural characteristics. We also show that, for these high-quality epitaxial films, structural quality (edge and screw dislocations), as measured by diffraction techniques, is not the dominant contributor to leakage. Instead, the small leakage in our films is limited by thermionic emission across the interfaces, which is distinct from the large leakage due to trap-mediated bulk transport in the previously reported films. To support this conclusion, we show that on lattice-matched buffers with improved structural characteristics but higher interface roughness exhibit increased leakage characteristics. This demonstration of low leakage current in heteroepitaxial films and understanding of the importance of interface barrier and surface roughness can guide further efforts toward improving the reliability of wurtzite ferroelectric devices. Published by the American Physical Society2025more » « less
-
A search for electroweak production of a single vectorlike quark in association with a bottom ( ) quark in the all-hadronic decay channel is presented. This search uses proton-proton collision data at collected by the CMS experiment at the CERN LHC during 2016–2018, corresponding to an integrated luminosity of . The quark is assumed to have charge and decay to a top ( ) quark and a Higgs ( ) or boson. Hadronic decays of the quark and the or boson are reconstructed from the kinematic properties of jets, including those containing hadrons. No deviation from the standard model prediction is observed in the reconstructed and invariant mass distributions. The 95% confidence level upper limits on the product of the production cross section and branching fraction of a quark produced in association with a quark and decaying via or range from 1260 to 68 fb for quark masses of 600–1200 GeV. © 2024 CERN, for the CMS Collaboration2024CERNmore » « less
-
Lookup-table decoding is fast and distance preserving, making it attractive for near-term quantum computer architectures with small-distance quantum error-correcting codes. In this work, we develop several optimization tools that can potentially reduce the space and time overhead required for flag fault-tolerant quantum error correction (FTQEC) with lookup-table decoding on Calderbank-Shor-Steane (CSS) codes. Our techniques include the compact lookup-table construction, the meet-in-the-middle technique, the adaptive time decoding for flag FTQEC, the classical processing technique for flag information, and the separate - and -counting technique. We evaluate the performance of our tools using numerical simulation of hexagonal color codes of distances 3, 5, 7, and 9 under circuit-level noise. Combining all tools can result in an increase of more than an order of magnitude in the pseudothreshold for the hexagonal color code of distance 9, from to . Published by the American Physical Society2024more » « less
-
We investigate the impact of matter effects on (time-reversal)-odd observables, making use of the quantum-mechanical formalism of neutrino-flavor evolution. We attempt to be comprehensive and pedagogical. Matter-induced -invariance violation (TV) is qualitatively different from, and more subtle than, matter-induced (charge-parity)-invariance violation. If the matter distribution is symmetric relative to the neutrino production and detection points, matter effects will not introduce any new TV. However, if there is intrinsic TV, matter effects can modify the size of the -odd observable. On the other hand, if the matter distribution is not symmetric, there is genuine matter-induced TV. For Earth-bound long-baseline oscillation experiments, these effects are small. This remains true for unrealistically-asymmetric matter potentials (for example, we investigate the effects of “hollowing out” 50% of the DUNE neutrino trajectory). More broadly, we explore consequences, or lack thereof, of asymmetric matter potentials on oscillation probabilities. While fascinating in their own right, -odd observables are currently of limited practical use, due in no small part to a dearth of intense, well-characterized, high-energy electron-neutrino beams. Further in the future, however, intense, high-energy muon storage rings might become available and allow for realistic studies of -invariance in neutrino oscillations. Published by the American Physical Society2025more » « less
An official website of the United States government
