Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 3, 2026
-
Free, publicly-accessible full text available January 2, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
This paper makes progress toward learning Nash equilibria in two-player, zero-sum Markov games from offline data. Despite a large number of prior works tackling this problem, the state-of-the-art results suffer from the curse of multiple agents in the sense that their sample complexity bounds scale linearly with the total number of joint actions. The current paper proposes a new model-based algorithm, which provably finds an approximate Nash equilibrium with a sample complexity that scales linearly with the total number of individual actions. This work also develops a matching minimax lower bound, demonstrating the minimax optimality of the proposed algorithm for a broad regime of interest. An appealing feature of the result lies in algorithmic simplicity, which reveals the unnecessity of sophisticated variance reduction and sample splitting in achieving sample optimality.more » « lessFree, publicly-accessible full text available November 1, 2025
An official website of the United States government

Full Text Available