skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 23, 2026

Title: Spatially parallel decoding for multi-qubit lattice surgery
Abstract Running quantum algorithms protected by quantum error correction requires a real time, classical decoder. To prevent the accumulation of a backlog, this decoder must process syndromes from the quantum device at a faster rate than they are generated. Most prior work on real time decoding has focused on an isolated logical qubit encoded in the surface code. However, for surface code, quantum programs of utility will require multi-qubit interactions performed via lattice surgery. A large merged patch can arise during lattice surgery—possibly as large as the entire device. This puts a significant strain on a real time decoder, which must decode errors on this merged patch and maintain the level of fault-tolerance that it achieves on isolated logical qubits. These requirements are relaxed by using spatially parallel decoding, which can be accomplished by dividing the physical qubits on the device into multiple overlapping groups and assigning a decoder module to each. We refer to this approach asspatially parallel windows. While previous work has explored similar ideas, none have addressed system-specific considerations pertinent to the task or the constraints from using hardware accelerators. In this work, we demonstrate how to configure spatially parallel windows, so that the scheme (1) is compatible with hardware accelerators, (2) supports general lattice surgery operations, (3) maintains the fidelity of the logical qubits, and (4) meets the throughput requirement for real time decoding. Furthermore, our results reveal the importance of optimally choosing the buffer width to achieve a balance between accuracy and throughput—a decision that should be influenced by the device’s physical noise.  more » « less
Award ID(s):
2016136
PAR ID:
10593226
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Quantum Science and Technology
Volume:
10
Issue:
3
ISSN:
2058-9565
Page Range / eLocation ID:
035007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent experimental advances have made it possible to implement logical multiqubit transversal gates on surface codes in a multitude of platforms. A transversal controlled- (t) gate on two surface codes introduces correlated errors across the code blocks and thus requires modified decoding compared to established methods of decoding surface-code quantum memory (SCQM) or lattice-surgery operations. In this work, we examine and benchmark the performance of three different decoding strategies for the t for scalable fault-tolerant quantum computation. In particular, we present a low-complexity decoder based on minimum-weight perfect matching (MWPM) that achieves the same threshold as the SCQM MWPM decoder. We extend our analysis with a study of tailored decoding of a transversal-teleportation circuit, along with a comparison between the performance of lattice-surgery and transversal operations under Pauli- and erasure-noise models. Our investigation builds toward systematic estimation of the cost of implementing large-scale quantum algorithms based on transversal gates in the surface code. Published by the American Physical Society2025 
    more » « less
  2. null (Ed.)
    Current, near-term quantum devices have shown great progress in the last several years culminating recently with a demonstration of quantum supremacy. In the medium-term, however, quantum machines will need to transition to greater reliability through error correction, likely through promising techniques like surface codes which are well suited for near-term devices with limited qubit connectivity. We discover quantum memory, particularly resonant cavities with transmon qubits arranged in a 2.5D architecture, can efficiently implement surface codes with substantial hardware savings and performance/fidelity gains. Specifically, we virtualize logical qubits by storing them in layers of qubit memories connected to each transmon. Surprisingly, distributing each logical qubit across many memories has a minimal impact on fault tolerance and results in substantially more efficient operations. Our design permits fast transversal application of CNOT operations between logical qubits sharing the same physical address (same set of cavities) which are 6x faster than standard lattice surgery CNOTs. We develop a novel embedding which saves approximately 10x in transmons with another 2x savings from an additional optimization for compactness. Although qubit virtualization pays a 10x penalty in serialization, advantages in the transversal CNOT and in area efficiency result in fault-tolerance and performance comparable to conventional 2D transmon-only architectures. Our simulations show our system can achieve fault tolerance comparable to conventional two-dimensional grids while saving substantial hardware. Furthermore, our architecture can produce magic states at 1.22x the baseline rate given a fixed number of transmon qubits. This is a critical benchmark for future fault-tolerant quantum computers as magic states are essential and machines will spend the majority of their resources continuously producing them. This architecture substantially reduces the hardware requirements for fault-tolerant quantum computing and puts within reach a proof-of-concept experimental demonstration of around 10 logical qubits, requiring only 11 transmons and 9 attached cavities in total. 
    more » « less
  3. null (Ed.)
    Quantum computers are growing in size, and design decisions are being made now that attempt to squeeze more computation out of these machines. In this spirit, we design a method to boost the computational power of near-term quantum computers by adapting protocols used in quantum error correction to implement "Approximate Quantum Error Correction (AQEC)." By approximating fully-fledged error correction mechanisms, we can increase the compute volume (qubits × gates, or "Simple Quantum Volume (SQV)") of near-term machines. The crux of our design is a fast hardware decoder that can approximately decode detected error syndromes rapidly. Specifically, we demonstrate a proof-of-concept that approximate error decoding can be accomplished online in near-term quantum systems by designing and implementing a novel algorithm in Single-Flux Quantum (SFQ) superconducting logic technology. This avoids a critical decoding backlog, hidden in all offline decoding schemes, that leads to idle time exponential in the number of T gates in a program. Our design utilizes one SFQ processing module per physical qubit. Employing state-of-the-art SFQ synthesis tools, we show that the circuit area, power, and latency are within the constraints of contemporary quantum system designs. Under pure dephasing error models, the proposed accelerator and AQEC solution is able to expand SQV by factors between 3,402 and 11,163 on expected near-term machines. The decoder achieves a 5% accuracy-threshold and pseudo-thresholds of ∼ 5%,4.75%,4.5%, and 3.5% physical error-rates for code distances 3,5,7, and 9. Decoding solutions are achieved in a maximum of ∼20 nanoseconds on the largest code distances studied. By avoiding the exponential idle time in offline decoders, we achieve a 10x reduction in required code distances to achieve the same logical performance as alternative designs. 
    more » « less
  4. The Minimum-Weight Perfect Matching (MWPM) decoder is widely used in Quantum Error Correction (QEC) decoding. Despite its high accuracy, existing implementations of the MWPM decoder cannot catch up with quantum hardware, e.g., 1 million measurements per second for superconducting qubits. They suffer from a backlog of measurements that grows exponentially and as a result, cannot realize the power of quantum computation. We design and implement a fast MWPM decoder, called Parity Blossom, which reaches a time complexity almost proportional to the number of defect measurements. We further design and implement a parallel version of Parity Blossom called Fusion Blossom. Given a practical circuit-level noise of 0.1%, Fusion Blossom can decode a million measurement rounds per second up to a code distance of 33. Fusion Blossom also supports stream decoding mode that reaches a 0.7 ms decoding latency at code distance 21 regardless of the measurement rounds. 
    more » « less
  5. Quantum error correction (QEC) is believed to be essential for the realization of large-scale quantum computers. However, due to the complexity of operating on the encoded `logical' qubits, understanding the physical principles for building fault-tolerant quantum devices and combining them into efficient architectures is an outstanding scientific challenge. Here we utilize reconfigurable arrays of up to 448 neutral atoms to implement all key elements of a universal, fault-tolerant quantum processing architecture and experimentally explore their underlying working mechanisms. We first employ surface codes to study how repeated QEC suppresses errors, demonstrating 2.14(13)x below-threshold performance in a four-round characterization circuit by leveraging atom loss detection and machine learning decoding. We then investigate logical entanglement using transversal gates and lattice surgery, and extend it to universal logic through transversal teleportation with 3D [[15,1,3]] codes, enabling arbitrary-angle synthesis with logarithmic overhead. Finally, we develop mid-circuit qubit re-use, increasing experimental cycle rates by two orders of magnitude and enabling deep-circuit protocols with dozens of logical qubits and hundreds of logical teleportations with [[7,1,3]] and high-rate [[16,6,4]] codes while maintaining constant internal entropy. Our experiments reveal key principles for efficient architecture design, involving the interplay between quantum logic and entropy removal, judiciously using physical entanglement in logic gates and magic state generation, and leveraging teleportations for universality and physical qubit reset. These results establish foundations for scalable, universal error-corrected processing and its practical implementation with neutral atom systems. 
    more » « less