skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Study of wall ablation on low-voltage arc interruption: The effect of Stefan flow
Low-voltage circuit breakers provide essential protection for industrial and residential power installations, by taking advantage of the voltage drop at the electrode–plasma interface to force current zero. This is accomplished by using the magnetic force and unbalanced pressure on the arc as the contacts open to push the arc toward a stack of steel plates that break the arc into subarcs and thereby multiply the number of voltage drops. As the fault current can be high, substantial energy can be dissipated, which results in interactions among the arc and solid counterparts in terms of wall ablation and metal evaporation. In this study, ablation experiments are conducted to demonstrate its great influence on the arc voltage and on the pressure field. Significant progress has been accomplished in the computation of arc dynamics through the coupling of fluid motion with electromagnetics, although an important mechanism in arc breaking simulation, the effect of Stefan flow caused by species generation, has not been considered. We report out a numerical approach for taking into account the effect of Stefan flow, particularly for the breakers with high gasifying wall materials. This approach accounts for the diffusion induced convection due to added-in species from the evaporation surfaces, which will largely influence the flow field and the properties of the plasma mixture. Apart from the voltage drop, this mechanism plays an important role in simulating arc interruption. The ability of conducting Stefan flow computation further enhances the understanding of arc behaviors and improves the design of practically oriented low-voltage circuit breakers.  more » « less
Award ID(s):
1650544
PAR ID:
10593702
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
125
Issue:
21
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The next generation of advanced combustion devices is being developed to operate under ultra-high-pressure conditions. However, under such extreme conditions, flame tends to become unstable and measurement of fundamental properties such as the laminar flame speed becomes challenging. One potential method to resolve this issue is measuring the ignition-affected region during spherically expanding flame experiments. The flame in this region is more resistant to perturbations and remains smooth due to the high stretch rates (i.e. small radii). Stable flame propagation allows for improved flame measurement, however, the experimentally observed kernel propagation is a function of both inflammation and ignition plasma. Therefore, the goal of the present study is to better understand the plasma formation and propagation during the ignition process, which would allow for reliable laminar flame speed measurements. To accomplish this goal, thermal plasma operating at high pressures is studied with emphasis on the spark energy effects on the formation of the ignition kernel. The thermal effect of the plasma is experimentally observed using a high-speed Schlieren imaging system. The energy dissipated within the plasma is measured with the use of voltage and current probes with a measurement of plasma sheath voltage drop as an input to numerical modeling. The measured kernel propagation rate is used to assess the accuracy of the model. The experiments and modeling are conducted in dry air at 1, 3, and 5 atm as well as in CH 4 -N 2 mixtures at 1 atm, and kernel radius, temperature, and mass are reported. The voltage-drop (as a non-thermal loss) is measured to be approximately 330 ± 5 V (dry air at 1 atm) for glow plasma with a large dependency on pressure, gas composition, electrode surface quality, electrode geometry, electrode shape, and current density. The same loss within the arc plasma is measured to be 15 ± 5 V, however the arc phase loss which agrees with arc propagation is significantly higher (∼45 V) which suggest additional unaccounted for phenomena occurring during the arc phase. With these losses, the modeling results are shown to predict the final kernel radius within 10%–20% of the observed kernel size. The difference found between the modeling and experimental results is determined to be a result of assuming that the primary loss mechanism (voltage drop across sheath formation) remains constant for the duration of glow discharge. The discrepancy for arc discharge is discussed with several potential sources, however, additional studies are required to better understand how the arc formation affects the kernel propagation. 
    more » « less
  2. Plasma–solid interaction represents a major concern in many applications such as power-interruption and plasma–metal processing. Characterized by high-current density and voltage drop, the arc roots dissipate intensive heat to electrode vaporization, which participates in the ionization and, thereby, significantly alters the plasma properties and gas dynamics. Most of the arc root models feature approaches based on surface temperature or (temperature dependent) current density. Due to the complexity of conjugated heat transfer across arc roots involving three-phase interactions of plasma with liquid spots and solid electrodes, accurately determining the surface temperature distribution is extremely computationally demanding. Hence, models hitherto fail to quantitatively estimate neither the molten spot size nor the total amount of vaporization. In this work, we propose an arc root model featuring a hemispherical structure that correlates the molten spot size with the heat partition between conduction and vaporization to estimate the energy dissipation at arc roots and, thus, to trace the vaporization rate. Following local partial pressure adjusted Langmuir vaporization, we deduce an analytical solution of molten spot size for quasi-steady-state, which compares favorably with experiments. Specifically, the vaporization dominates over conduction for large molten spots as in the case of high-current arcs. However, for low-current arcs, the vaporization heat is trivial compared with conduction. Furthermore, we integrate this arc root model into a study case of arc plasma based on the magnetohydrodynamics method. The simulated arc voltage and arc displacement match with the experiment. This model is expected to find broad applications in power interruption and plasma etching. 
    more » « less
  3. Aerodynamic breakup of vaporizing drops is commonly seen in many spray applications. While it is well known that vaporization can modulate interfacial instabilities, the impact of vaporization on drop aerobreakup is poorly understood. Detailed interface-resolved simulations were performed to systematically study the effect of vaporization, characterized by the Stefan number, on the drop breakup and acceleration for different Weber numbers and density ratios. It is observed that the resulting asymmetric vaporization rates and strengths of Stefan flow on the windward and leeward sides of the drop hinder bag development and prevent drop breakup. The critical Weber number thus generally increases with the Stefan number. The modulation of the boundary layer also contributes to a significant increase of drag coefficient. Numerical experiments were performed to affirm that the drop volume reduction plays a negligible role and the Stefan flow is the dominant reason for the breakup suppression and drag enhancement observed. 
    more » « less
  4. This article identifies and validates the use of ultrafast silicon carbide (SiC) junction field effect transistor (JFET)-based self-powered solid-state circuit breakers (SSCBs) as the enabling protective device for a 340 Vdc residential dc community microgrid. These SSCBs will be incorporated into a radial distribution system in order to enhance fault discrimination through autonomous operation. Because of the nature and characteristics of short-circuit fault inception in dc microgrids, the time-current trip characteristics of protective devices must be several orders of magnitude faster than conventional circuit breakers. The proposed SSCBs detect short-circuit faults by sensing the sudden voltage rise between its two power terminals and draw power from the fault condition itself to turn off SiC JFETs and then, coordinate with no-load contacts that can isolate the fault. Depending upon the location of the SSCBs in the microgrid, either unidirectional or bidirectional implementations are incorporated. Cascaded SSCBs are tuned using a simple resistor change to enable fault discrimination between upstream high-current feeds and downstream lower current branches. Operation of one of the SSCBs and three in cascaded arrangements are validated both in simulation and with a hardware test platform. Thermal impact on the SSCB is discussed as well. The target application is a residential dc microgrid that will be installed as part of a revitalization effort of an inner city Milwaukee neighborhood. 
    more » « less
  5. Abstract Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opens up a hitherto unexplored area of research for manipulating the plasma–solid interactions. 
    more » « less