Abstract Pattern formation in plasma–solid interaction represents a great research challenge in many applications from plasma etching to surface treatment, whereby plasma attachments on electrodes (arc roots) are constricted to self-organized spots. Gliding arc discharge in a Jacob’s Ladder, exhibiting hopping dynamics, provides a unique window to probe the nature of pattern formation in plasma–surface interactions. In this work, we find that the existence of negative differential resistance (NDR) across the sheath is responsible for the observed hopping pattern. Due to NDR, the current density and potential drop behave as activator and inhibitor, the dynamic interactions of which govern the surface current density re-distribution and the formation of structured spots. In gliding arc discharges, new arc roots can form separately in front of the existing root(s), which happens periodically to constitute the stepwise hopping. From the instability phase-diagram analysis, the phenomenon that arc attachments tend to constrict itself spontaneously in the NDR regime is well explained. Furthermore, we demonstrate via a comprehensive magnetohydrodynamics (MHD) computation that the existence of a sheath NDR can successfully reproduce the arc hopping as observed in experiments. Therefore, this work uncovers the essential role of sheath NDR in the plasma–solid surface pattern formation and opens up a hitherto unexplored area of research for manipulating the plasma–solid interactions.
more »
« less
Development of an arc root model for studying the electrode vaporization and its influence on arc dynamics
Plasma–solid interaction represents a major concern in many applications such as power-interruption and plasma–metal processing. Characterized by high-current density and voltage drop, the arc roots dissipate intensive heat to electrode vaporization, which participates in the ionization and, thereby, significantly alters the plasma properties and gas dynamics. Most of the arc root models feature approaches based on surface temperature or (temperature dependent) current density. Due to the complexity of conjugated heat transfer across arc roots involving three-phase interactions of plasma with liquid spots and solid electrodes, accurately determining the surface temperature distribution is extremely computationally demanding. Hence, models hitherto fail to quantitatively estimate neither the molten spot size nor the total amount of vaporization. In this work, we propose an arc root model featuring a hemispherical structure that correlates the molten spot size with the heat partition between conduction and vaporization to estimate the energy dissipation at arc roots and, thus, to trace the vaporization rate. Following local partial pressure adjusted Langmuir vaporization, we deduce an analytical solution of molten spot size for quasi-steady-state, which compares favorably with experiments. Specifically, the vaporization dominates over conduction for large molten spots as in the case of high-current arcs. However, for low-current arcs, the vaporization heat is trivial compared with conduction. Furthermore, we integrate this arc root model into a study case of arc plasma based on the magnetohydrodynamics method. The simulated arc voltage and arc displacement match with the experiment. This model is expected to find broad applications in power interruption and plasma etching.
more »
« less
- Award ID(s):
- 1650544
- PAR ID:
- 10597319
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 10
- Issue:
- 8
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Low-voltage circuit breakers provide essential protection for industrial and residential power installations, by taking advantage of the voltage drop at the electrode–plasma interface to force current zero. This is accomplished by using the magnetic force and unbalanced pressure on the arc as the contacts open to push the arc toward a stack of steel plates that break the arc into subarcs and thereby multiply the number of voltage drops. As the fault current can be high, substantial energy can be dissipated, which results in interactions among the arc and solid counterparts in terms of wall ablation and metal evaporation. In this study, ablation experiments are conducted to demonstrate its great influence on the arc voltage and on the pressure field. Significant progress has been accomplished in the computation of arc dynamics through the coupling of fluid motion with electromagnetics, although an important mechanism in arc breaking simulation, the effect of Stefan flow caused by species generation, has not been considered. We report out a numerical approach for taking into account the effect of Stefan flow, particularly for the breakers with high gasifying wall materials. This approach accounts for the diffusion induced convection due to added-in species from the evaporation surfaces, which will largely influence the flow field and the properties of the plasma mixture. Apart from the voltage drop, this mechanism plays an important role in simulating arc interruption. The ability of conducting Stefan flow computation further enhances the understanding of arc behaviors and improves the design of practically oriented low-voltage circuit breakers.more » « less
-
The behavior of vacuum arcs during VAR processing is known to impact product yield and contribute to ingot defects. Ampere Scientific’s VARmetricTM system has demonstrated non-invasive detection of the spatio-temporal properties of vacuum arcs, including the detection of side-arcing conditions, by utilizing measurements of the magnetic field external to the furnace. Here we present an analysis of spatio-temporal arc distributions measured by VARmetricTM on a production VAR furnace. Analysis of the arc over different timescales provides new insights into the operating characteristics of VAR furnaces, and on how power is transferred to the molten pool. For example, even under similar steady state operating conditions within a given melt, we have identified significantly different arc distributions, information that may be useful in further understanding the characteristics of the molten metal pool.more » « less
-
The behavior of vacuum arcs during VAR processing is known to impact product yield and contribute to ingot defects. Ampere Scientific’s VARmetricTM system has demonstrated non-invasive detection of the spatio-temporal properties of vacuum arcs, including the detection of side-arcing conditions, by utilizing measurements of the magnetic field external to the furnace. Here we present an analysis of spatio-temporal arc distributions measured by VARmetricTM on a production VAR furnace. Analysis of the arc over different timescales provides new insights into the operating characteristics of VAR furnaces, and on how power is transferred to the molten pool. For example, even under similar steady state operating conditions within a given melt, we have identified significantly different arc distributions, information that may be useful in further understanding the characteristics of the molten metal pool.more » « less
-
Abstract Plasma technology is actively used for nanoparticle synthesis and modification. All plasma techniques share the ambition of providing high quality, nanostructured materials with full control over their crystalline state and functional properties. Pulsed-DC physical/chemical vapour deposition, high power impulse magnetron sputtering, and pulsed cathodic arc are consolidated low-temperature plasma processes for the synthesis of high-quality nanocomposite films in vacuum environment. However, atmospheric arc discharge stands out thanks to the high throughput, wide variety, and excellent quality of obtained stand-alone nanomaterials, mainly core–shell nanoparticles, transition metal dichalcogenide monolayers, and carbon-based nanostructures, like graphene and carbon nanotubes. Unique capabilities of this arc technique are due to its flexibility and wide range of plasma parameters achievable by modulation of the frequency, duty cycle, and amplitude of pulse waveform. The many possibilities offered by pulsed arc discharges applied on synthesis of low-dimensional materials are reviewed here. Periodical variations in temperature and density of the pulsing arc plasma enable nanosynthesis with a more rational use of the supplied power. Parameters such as plasma composition, consumed power, process stability, material properties, and economical aspects, are discussed. Finally, a brief outlook towards future tendencies of nanomaterial preparation is proposed. Atmospheric pulsed arcs constitute promising, clean processes providing ecological and sustainable development in the production of nanomaterials both in industry and research laboratories.more » « less
An official website of the United States government
