This study explores the latent thermal energy storage potential of an organic phase change material with porous copper foam and its applicability in electronic cooling under varying heat load conditions. The organic phase change material, n-eicosane, is known for its inherently low thermal conductivity of 0.15 W/mK, rendering it vulnerable during power spikes despite its abundant latent heat energy for phase transition from solid to liquid. Porous copper foams are often integrated into n-eicosane to enhance the composite’s thermal conductivity. However, the volume fraction of the phase change material in the porous foam that optimally improves the thermal performance can be dependent on the boundary condition, the cut-off temperature, and the thickness. A finite difference numerical model was developed and utilized to ascertain the energy consumption for the composite of n-eicosane with two kinds of porous copper foam with varying porosity under different heat rates, cut-off temperatures, and thickness. In addition, the results are compared with a metallic phase change material (gallium), a material chosen with a similar melting point but significantly high thermal conductivity and volumetric latent heat. For validation of the numerical model and to experimentally verify the effect of boundary condition (heat rate), experimental investigation was performed for n-eicosane and high porosity copper foam composite at varying heat rates to observe its melting and solidification behaviors during continuous operation until a cut-off temperature of 70 ◦C is reached. Experiments reveal that heat rate influences the amount of latent energy storage capability until a cutoff temperature is reached. For broad comparison, the numerical model was used to obtain the accessed energy and power density and generate thermal Ragone plots to compare and characterize pure gallium and n-eicosane - porous foam composite with varying volume fractions, cutoff temperature, and thickness under volumetric and gravimetric constraints. Overall, the proposed framework in the form of thermal Ragone plots effectively delineates the optimal points for various combinations of heat rate, cutoff point, and aspect ratio, affirming its utility for comprehensive design guidelines for PCM-based composites for electronic cooling applications
more »
« less
Structural effects on thermal conductivity of micro-thick Li4Ti5O12-based anode
This study investigates the structural effects on the cross-plane thermal conductivity of Li4Ti5O12-based anode active material. Three structures are investigated: a basic structure consisting of LiBr/LiCl/Li4Ti5O12, polyvinylidene difluoride, and Super P (sample #1); a structure without Li4Ti5O12 (sample #2); and a structure without LiBr/LiCl (sample #3). Despite its high porosity level (77%), sample #1 exhibits higher thermal conductivity than sample #3 (64% porosity) in both air and vacuum conditions, potentially due to the extra structural bonding provided by LiBr/LiCl. The observed difference in cross-plane thermal conductivity between air and vacuum conditions provides insights into the configuration of the anode's active material in the heat transfer direction. The lower limit corresponds to the parallel thermal circuit configuration of active material and air, which is the product of the sample's porosity and thermal conductivity of air. Our analysis suggests that in sample #2, the anode's active material and air inside the pores demonstrate a more serial configuration, while in sample #3, they exhibit a more parallel configuration in the heat transfer direction. However, the thermal conductivity difference observed for sample #1 falls below the theoretical lower bound indicating significant thermal radiation within the pores. Furthermore, the in-plane thermal conductivity is predominantly controlled by the copper foil. Sample #2 exhibits the lowest in-plane thermal conductivity. This is attributed to the severe oxidization of the copper foil by LiBr/LiCl, which is confirmed by structure characterization.
more »
« less
- Award ID(s):
- 2032464
- PAR ID:
- 10593762
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 135
- Issue:
- 23
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Composites printed using material extrusion additive manufacturing (AM) typically exhibit alignment of high- aspect-ratio reinforcements parallel to the print direction. This alignment leads to highly anisotropic stiffness, strength, and transport properties. In many cases, it would be desirable to increase mechanical and transport properties transverse to the print direction, for example, in 3D-printed heat sinks or heat exchangers where heat must be moved efficiently between printed roads or layers. Rotational direct ink writing (RDIW), where the deposition nozzle simultaneously rotates and translates during deposition, provides a method to reorient fibers transverse to the print direction during the printing process. In the present work, carbon fiber-reinforced epoxy composites were printed by RDIW with a range of nozzle rotation rates and the in-plane and through-thickness thermal conductivity was measured. In addition, the orientation of carbon fiber (CF) in the composites was measured using optical microscopy and image analysis, from which second-order fiber orientation tensors were calculated. These results showed that the orientation of CF became less anisotropic as nozzle rotation rate increased, leading to increased through-thickness thermal conductivity, which increased by 40% at the highest rotation rate. The orientation tensors also showed that RDIW was more effective at reorienting fibers within the in-plane transverse direction compared to the through-thickness transverse direction. The results presented here demonstrate that a current weakness of material extrusion AM composites—poor thermal conductivity in the through-thickness direction—can be significantly improved with RDIW.more » « less
-
Purpose AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity. Design/methodology/approach The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity. Findings The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm 3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm 3 . The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains. Practical implications The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications. Originality/value To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity.more » « less
-
Abstract The densification of integrated circuits requires thermal management strategies and high thermal conductivity materials 1–3 . Recent innovations include the development of materials with thermal conduction anisotropy, which can remove hotspots along the fast-axis direction and provide thermal insulation along the slow axis 4,5 . However, most artificially engineered thermal conductors have anisotropy ratios much smaller than those seen in naturally anisotropic materials. Here we report extremely anisotropic thermal conductors based on large-area van der Waals thin films with random interlayer rotations, which produce a room-temperature thermal anisotropy ratio close to 900 in MoS 2 , one of the highest ever reported. This is enabled by the interlayer rotations that impede the through-plane thermal transport, while the long-range intralayer crystallinity maintains high in-plane thermal conductivity. We measure ultralow thermal conductivities in the through-plane direction for MoS 2 (57 ± 3 mW m −1 K −1 ) and WS 2 (41 ± 3 mW m −1 K −1 ) films, and we quantitatively explain these values using molecular dynamics simulations that reveal one-dimensional glass-like thermal transport. Conversely, the in-plane thermal conductivity in these MoS 2 films is close to the single-crystal value. Covering nanofabricated gold electrodes with our anisotropic films prevents overheating of the electrodes and blocks heat from reaching the device surface. Our work establishes interlayer rotation in crystalline layered materials as a new degree of freedom for engineering-directed heat transport in solid-state systems.more » « less
-
This study investigates the integration of reduced graphene oxide (rGO) films as ground plane in miniaturized RF/mm-wave systems for advanced thermal management applications. Traditional methods such as copper-based heat spreaders struggle to handle the increased power and tighter integration requirements of modern day RF/mmWave packaging. Due to rGO’s exceptionally high in-plane thermal conductivity (∼1100 W/mK), when compared with copper (∼400 W/mK), rGO emerges as a compelling candidate for thermal management in RF electronic packaging. This study investigates the use of rGO to form a ground plane in RF and microwave electronics, evaluating its performance through meticulous transmission line simulations and measurements. Our findings reveal that rGO ground planes exhibit high signal integrity, with an average loss of about 1 dB at 10 GHz and around 2 dB up to 26 GHz, comparable to the performance of traditional copper ground planes. These results indicate that rGO is a promising material for RF and microwave circuits, especially in applications requiring enhanced thermal management and mechanical flexibility.more » « less
An official website of the United States government
