skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A practical theoretical model for Ge-like epitaxial diodes: I. The I – V characteristics
A practical quantitative model is presented to account for the I–V characteristics of pin diodes based on epitaxial Ge-like materials. The model can be used to quantify how the different material properties and recombination mechanisms affect the diode performance. The importance of dislocations, non-passivated defects, and residual intrinsic layer doping in determining the qualitative shape of the I–V curves is discussed in detail. Examples are shown covering literature diodes as well as diodes fabricated with the purpose of validating the theoretical effort.  more » « less
Award ID(s):
2235447 2119583
PAR ID:
10593772
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
135
Issue:
12
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A theoretical model that can be used to simultaneously fit the I–V characteristics and spectral optical responsivity of Ge-like pin diodes is described in detail and validated experimentally using specially fabricated Ge- and Ge1−ySny devices. The model combines a numerical solution of the basic semiconductor transport equations with a rigorous calculation of the optical generation rate that accounts for multiple reflections in the device structure multilayers. The results can be used to quantify the reduction of photocurrent associated with recombination centers for full optimization of the device structure. 
    more » « less
  2. Growing a thick high-quality epitaxial layer on the β-Ga2O3 substrate is crucial in commercializing β-Ga2O3 devices. Metal organic chemical vapor deposition (MOCVD) is also well-established for the large-scale commercial growth of β-Ga2O3 and related heterostructures. This paper presents a systematic study of the Schottky barrier diodes fabricated on two different Si-doped homoepitaxial β-Ga2O3 thin films grown on Sn-doped (001) and (010) β-Ga2O3 substrates by MOCVD. X-ray diffraction analysis of the MOCVD-grown sample, room temperature current density–voltage data for different Schottky diodes, and C–V measurements are presented. Diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage, are studied. Temperature dependence (170–360 K) of the ideality factor, barrier height, and Poole–Frenkel reverse leakage mechanism are also analyzed from the J–V–T characteristics of the fabricated Schottky diodes. 
    more » « less
  3. A diode is fabricated using poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT‐PSS) and n‐doped Si. Using an ionic liquid (IL) gel as the gate dielectric, the diode rectification ratio is tunable up to four orders of magnitude at very low operating voltages. Both p–n and Schottky type diodes are observed in the same device depending on the polarity of the gate voltage. IL‐gated electrostatic/electrochemical doping in PEDOT‐PSS is believed to be responsible for this switch. The turn‐on voltage in the first quadrant of the current–voltage (I–V) curve for the p–n diode is in the range 0.2–0.4 V. The Schottky diode operates in the third quadrant. This is the first report on a tunable diode using an IL to control its operation, and the low operating voltages make these diodes excellent candidates for use in reduced power consumption electronics. 
    more » « less
  4. In this Letter, we unveil the high-temperature limits of N-polar GaN Schottky contacts enhanced by a low-pressure chemical vapor deposited (LPCVD) SiN interlayer. Compared to conventional Schottky diodes, the insertion of a 5 nm SiN lossy dielectric interlayer in-between Ni and N-polar GaN increases the turn-on voltage ( V ON ) from 0.4 to 0.9 V and the barrier height ( ϕ B ) from 0.4 to 0.8 eV. This modification also reduces the leakage current at zero bias significantly: at room temperature, the leakage current in the conventional Schottky diode is >10 3 larger than that observed in the device with the SiN interlayer, while at 200 °C, this ratio increases to 10 5 . Thus, the rectification ratio (I ON /I OFF ) at ±1.5 V reduces to less than one at 250 °C for the conventional Schottky diode, whereas for SiN-coated diodes, rectification continues until 500 °C. The I–V characteristics of the diode with an SiN interlayer can be recovered after exposure to 400 °C or lower. Contact degradation occurs at 500 °C, although devices are not destroyed yet. Here, we report N-polar GaN Schottky contact operation up to 500 °C using an LPCVD SiN interlayer. 
    more » « less
  5. High crystalline quality thick β-Ga2O3drift layers are essential for multi-kV vertical power devices. Low-pressure chemical vapor deposition (LPCVD) is suitable for achieving high growth rates. This paper presents a systematic study of the Schottky barrier diodes fabricated on four different Si-doped homoepitaxial β-Ga2O3thin films grown on Sn-doped (010) and (001) β-Ga2O3substrates by LPCVD with a fast growth rate varying from 13 to 21  μm/h. A higher temperature growth results in the highest reported growth rate to date. Room temperature current density–voltage data for different Schottky diodes are presented, and diode characteristics, such as ideality factor, barrier height, specific on-resistance, and breakdown voltage are studied. Temperature dependence (25–250 °C) of the ideality factor, barrier height, and specific on-resistance is also analyzed from the J–V–T characteristics of the fabricated Schottky diodes. 
    more » « less