With the rise of two-dimensional (2D) materials, their excellent optical, electronic, and thermal properties different from bulk materials make them increasingly widely studied and commercialized. 2D materials’ exceptional physical properties and unique structures make them an ideal candidate for next-generation flexible and wearable devices. In this work, we created a manufacturing method to successfully transfer monolayer, bilayer, and trilayer graphene onto the flexible substrate, with trenches of micron size to suspend graphene. Thermal transport measurements have been characterized to prove the suspended region. The achievement of manufacturing 2D materials in suspended condition will allow us to study their intrinsic physical properties at a mechanical strain, as well as contribute to novel flexible and wearable electronic devices and sensors.
more »
« less
Thermal transport in graphene under large mechanical strains
Flexible electronic devices with skin-like properties are hailed as revolutionary for the development of next-generation electronic devices, such as electric-skin and humanoid robotics. Graphene is intrinsically flexible due to its structural thinness in nature and are considered next-generation materials for wearable electronics. These devices usually experience a large mechanical deformation in use so as to achieve intimate conformal contact with human skin and to coordinate complex human motions, while heat dissipation has been a major limitation when the device is under a large mechanical strain. Unlike the small deformation (<1%) induced by intrinsic material factors such as lattice mismatch between material components in devices, a large mechanical deformation (>1%) by an external loading condition could lead to apparent changes to global geometric shapes and significantly impact thermal transport. In this study, we investigated the thermal conductivities of graphene under several large mechanical strains: 2.9%, 4.3%, and 6.1%. We used a refined opto-thermal Raman technique to characterize the thermal transport properties and discovered the thermal conductivities to be 2092 ± 502, 972 ± 87, 348 ± 52, and 97 ± 13 W/(m K) for the relaxed state, 2.9%, 4.3%, and 6.1% tensile strain, respectively. Our results showed a significant decreasing trend in thermal conductivities with an increasing mechanical strain. The findings in this study reveal new thermal transport mechanisms in 2D materials and shed light on building novel flexible nanoelectronic devices with enhanced thermal management.
more »
« less
- PAR ID:
- 10593820
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 136
- Issue:
- 7
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Expected to become mainstream in the electronic industry, flexible electronics still face major challenging issues. For polymeric based flexible electronic substrates in particular, these challenges include a lack of electromagnetic shielding capability and poor heat dissipation. Here, we report a highly flexible and thermally-conductive macroscopic polydimethylsiloxane (PDMS) polymer film embedded with copper-coated reduced graphene oxide (rGO) fiber meshes. rGO fibers are assembled into 3D fiber meshes and electroplated with micrometer-thick copper coatings, displaying excellent electrical and thermal conductivities. Oriented in the horizontal and perpendicular directions within the PDMS polymeric matrix, the fiber mesh severs as a highly electrically and thermally-conductive backbone through the in-plane direction. Meanwhile, the fiber mesh also effectively shields electromagnetic interference in the X-band without causing thermal damage. The macroscopic film maintains electrically-insulated in the through-plane direction. Utilizing both the favorable thermal and electrical properties of the graphene fiber-based mesh and the flexibility of the PDMS matrix, our film may exhibit potentials for flexible electronics applications such as wearable electronics thermal management and flexible microwave identification devices.more » « less
-
Fluorographene, a fluorinated graphene-derivative, is expected to feature both high thermal conductivity and electrical insulation simultaneously, making it an emerging material for thermal management in electronic devices. In this paper, we investigated the lattice thermal conductivity and phonon transport properties of monolayer fluorographene using first-principles calculation. The solution of the fully linearized phonon Boltzmann transport equation gives the lattice thermal conductivity of monolayer fluorographene as 145.2 W m−1 K−1 at 300 K, which is about 20 times smaller than that of monolayer graphene. We systematically compared the phonon transport properties of all phonon modes in graphene and fluorographene in terms of phonon polarization. The significantly reduced thermal conductivity of fluorographene can be attributed to the lowering of both the lifetime of the flexural acoustic phonons and the group velocities of all acoustic phonons. We concluded that the broken in-plane mirror symmetry and the weaker in-plane chemical bonds induced by fluorination led to the suppression of the lattice thermal conductivity of fluorographene. Finally, we investigated the anomalously large contribution of optical phonons to the thermal transport process in fluorographene, where the large group velocities of selected optical phonons were derived from the in-plane acoustic modes of graphene. Our work provides a new approach to studying the influence of chemical functionalization on the phonon structure and exploring graphene-derived thermal management materials.more » « less
-
The human body is a challenging platform for energy harvesting. For thermoelectrics, the small temperature differences between the skin and air necessitate materials with low thermal conductivities in order to maintain useful output powers. For kinetic harvesting, human motion is not strongly tonal, the frequencies are very low, and the accelerations are modest. Kinetic harvesting can be split into two categories—inertial, in which human motion excites an inertial mass–the motion of which is transduced to electricity, and clothing integrated, in which the harvesting material is integrated with a garment or other flexible wearable system. In the first case, key issues are the electromechanical dynamics of the system and materials with improved electromechanical transduction figures of merit. In the second case, materials that provide flexibility, stretchability, and comfort are of primary importance.more » « less
-
Strong coupling between light and mechanical strain forms the foundation for next-generation optical micro- and nano-electromechanical systems. Such optomechanical responses in two-dimensional materials present novel types of functionalities arising from the weak van der Waals bond between atomic layers. Here, by using structure-sensitive megaelectronvolt ultrafast electron diffraction, we report the experimental observation of optically driven ultrafast in-plane strain in the layered group IV monochalcogenide germanium sulfide (GeS). Surprisingly, the photoinduced structural deformation exhibits strain amplitudes of order 0.1% with a 10 ps fast response time and a significant in-plane anisotropy between zigzag and armchair crystallographic directions. Rather than arising due to heating, experimental and theoretical investigations suggest deformation potentials caused by electronic density redistribution and converse piezoelectric effects generated by photoinduced electric fields are the dominant contributors to the observed dynamic anisotropic strains. Our observations define new avenues for ultrafast optomechanical control and strain engineering within functional devices.more » « less
An official website of the United States government
