Abstract Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability 1 . Deep-learning accelerators 2–9 aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting physical substrates beyond conventional electronics. Approaches so far 10–22 have been unable to apply the backpropagation algorithm to train unconventional novel hardware in situ. The advantages of backpropagation have made it the de facto training method for large-scale neural networks, so this deficiency constitutes a major impediment. Here we introduce a hybrid in situ–in silico algorithm, called physics-aware training, that applies backpropagation to train controllable physical systems. Just as deep learning realizes computations with deep neural networks made from layers of mathematical functions, our approach allows us to train deep physical neural networks made from layers of controllable physical systems, even when the physical layers lack any mathematical isomorphism to conventional artificial neural network layers. To demonstrate the universality of our approach, we train diverse physical neural networks based on optics, mechanics and electronics to experimentally perform audio and image classification tasks. Physics-aware training combines the scalability of backpropagation with the automatic mitigation of imperfections and noise achievable with in situ algorithms. Physical neural networks have the potential to perform machine learning faster and more energy-efficiently than conventional electronic processors and, more broadly, can endow physical systems with automatically designed physical functionalities, for example, for robotics 23–26 , materials 27–29 and smart sensors 30–32 .
more »
« less
Fundamentals and recent developments of free-space optical neural networks
Machine learning with artificial neural networks has recently transformed many scientific fields by introducing new data analysis and information processing techniques. Despite these advancements, efficient implementation of machine learning on conventional computers remains challenging due to speed and power constraints. Optical computing schemes have quickly emerged as the leading candidate for replacing their electronic counterparts as the backbone for artificial neural networks. Some early integrated photonic neural network (IPNN) techniques have already been fast-tracked to industrial technologies. This review article focuses on the next generation of optical neural networks (ONNs), which can perform machine learning algorithms directly in free space. We have aptly named this class of neural network model the free space optical neural network (FSONN). We systematically compare FSONNs, IPNNs, and the traditional machine learning models with regard to their fundamental principles, forward propagation model, and training process. We survey several broad classes of FSONNs and categorize them based on the technology used in their hidden layers. These technologies include 3D printed layers, dielectric and plasmonic metasurface layers, and spatial light modulators. Finally, we summarize the current state of FSONN research and provide a roadmap for its future development.
more »
« less
- PAR ID:
- 10594003
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 136
- Issue:
- 3
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Artificial intelligence (AI) techniques have displayed impressive success in many practical fields. Deep neural networks (DNNs) owe their success to the availability of massive labeled data. However, in many real-world problems, even when a large dataset is available, deep learning methods have shown less success, due to causes such as lack of large labeled dataset, presence of noise in data, or missing data. In the present work, we intend to examine the application of deep learning methods on radar data gathered from polar regions. Our goal is to track internal ice layers in radar imagery. In such data, the presence of noise is one of the main obstacles in utilizing popular deep learning methods such as transfer learning. Our experiments show that if the neural network is trained to detect contours of objects in electro-optical imagery, it can only track a low percentage of contours in radar data. Fine-tuning and further training do not provide any better results. However, we will show that selecting the right model and training the model on the radar imagery from the base, is going to yield far better results. We also discuss another possible learning approach that can save us time for data annotation.more » « less
-
null (Ed.)Abstract In this study, our goal is to track internal ice layers on the Snow Radar data collected by NASA Operation IceBridge. We examine the application of deep learning methods on radar data gathered from polar regions. Artificial intelligence techniques have displayed impressive success in many practical fields. Deep neural networks owe their success to the availability of massive labeled data. However, in many real-world problems, even when a large dataset is available, deep learning methods have shown less success, due to causes such as lack of a large labeled dataset, presence of noise in the data or missing data. In our radar data, the presence of noise is one of the main obstacles in utilizing popular deep learning methods such as transfer learning. Our experiments show that if the neural network is trained to detect contours of objects in electro-optical imagery, it can only track a low percentage of contours in radar data. Fine-tuning and further training do not provide any better results. However, we show that selecting the right model and training it on the radar imagery from the start yields far better results.more » « less
-
Deep neural networks have become essential for numerous applications due to their strong empirical performance such as vision, RL, and classification. Unfortunately, these networks are quite difficult to interpret, and this limits their applicability in settings where interpretability is important for safety, such as medical imaging. One type of deep neural network is neural tangent kernel that is similar to a kernel machine that provides some aspect of interpretability. To further contribute interpretability with respect to classification and the layers, we develop a new network as a combination of multiple neural tangent kernels, one to model each layer of the deep neural network individually as opposed to past work which attempts to represent the entire network via a single neural tangent kernel. We demonstrate the interpretability of this model on two datasets, showing that the multiple kernels model elucidates the interplay between the layers and predictions.more » « less
-
Abstract:The newer technologies such as data mining, machine learning, artificial intelligence and data analytics have revolutionized medical sector in terms of using the existing big data to predict the various patterns emerging from the datasets available inthe healthcare repositories. The predictions based on the existing datasets in the healthcare sector have rendered several benefits such as helping clinicians to make accurate and informed decisions while managing the patients’ health leading to better management of patients’ wellbeing and health-care coordination. The millions of people have been affected by the coronary artery disease (CAD). There are several machine learning including ensemble learning approach and deep neural networks-based algorithms have shown promising outcomes in improving prediction accuracy for early diagnosis of CAD. This paper analyses the deep neural network variant DRN, Rider Optimization Algorithm-Neural network (RideNN) and Deep Neural Network-Fuzzy Neural Network (DNFN) with application of ensemble learning method for improvement in the prediction accuracy of CAD. The experimental outcomes showed the proposed ensemble classifier achieved the highest accuracy compared to the other machine learning models. Keywords:Heart disease prediction, Deep Residual Network (DRN), Ensemble classifiers, coronary artery disease.more » « less
An official website of the United States government
