skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimizing hybrid ferromagnetic metal–ferrimagnetic insulator spin-Hall nano-oscillators: A micromagnetic study
Spin-Hall nano-oscillators (SHNOs) are nanoscale spintronic devices that generate high-frequency (GHz) microwave signals useful for various applications, such as neuromorphic computing and creating Ising systems. Recent research demonstrated that hybrid SHNOs consisting of a ferromagnetic metal (permalloy) and lithium ferrite-based (LAFO) insulating ferrimagnetic thin films have advantages in having lower auto-oscillation threshold currents (Ith) and generating larger microwave output power, making this hybrid structure an attractive candidate for spintronic applications. It is essential to understand how the tunable material properties of LAFO, e.g., its thickness, perpendicular magnetic anisotropy (Ku,LAFO), and saturation magnetization (Ms,LAFO), affect magnetic dynamics in hybrid SHNOs. We investigate the change in Ith and the output power of the device as the LAFO parameters vary. We find the Ith does not depend strongly on these parameters, but the output power has a highly nonlinear dependence on Ms,LAFO and Ku,LAFO. We further investigate the nature of the excited spin-wave modes as a function of Ku,LAFO and determine a critical value of Ku,LAFO above which propagating spin-waves are excited. Our simulation results provide a roadmap for designing hybrid SHNOs to achieve targeted spin excitation characteristics.  more » « less
Award ID(s):
2105114
PAR ID:
10594019
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
136
Issue:
19
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spin Hall oscillators (SHOs) based on bilayers of a ferromagnet (FM) and a non-magnetic heavy metal (HM) are electrically tunable nanoscale microwave signal generators. Achieving high output power in SHOs requires driving large-amplitude magnetization dynamics by a direct spin Hall current. Here we present an SHO engineered to have easy-plane magnetic anisotropy oriented normal to the bilayer plane, enabling large-amplitude easy-plane dynamics driven by spin Hall current. Our experiments and micromagnetic simulations demonstrate that the easy-plane anisotropy can be achieved by tuning the magnetic shape anisotropy and perpendicular magnetic anisotropy in a nanowire SHO, leading to a significant enhancement of the generated microwave power. The easy-plane SHO experimentally demonstrated here is an ideal candidate for realization of a spintronic spiking neuron. Our results provide an approach to design of high-power SHOs for wireless communications, neuromorphic computing, and microwave assisted magnetic recording. 
    more » « less
  2. Abstract Spin-orbit torque nano-oscillators based on bilayers of ferromagnetic and nonmagnetic metals are ultra-compact current-controlled microwave signal sources. They are attractive for practical applications such as microwave assisted magnetic recording, neuromorphic computing, and chip-to-chip wireless communications. However, a major drawback of these devices is low output microwave power arising from the relatively small anisotropic magnetoresistance of the ferromagnetic layer. Here we experimentally show that the output power of a spin-orbit torque nano-oscillator can be significantly enhanced without compromising its structural simplicity. Addition of a ferromagnetic reference layer to the oscillator allows us to employ current-in-plane giant magnetoresistance to boost the output power of the device. This enhancement of the output power is a result of both large magnitude of giant magnetoresistance compared to that of anisotropic magnetoresistance and their different angular dependencies. Our results hold promise for practical applications of spin-orbit torque nano-oscillators. 
    more » « less
  3. Hybrid dynamic systems combine advantages from different subsystems for realizing information processing tasks in both classical and quantum domains. However, the lack of controlling knobs in tuning system parameters becomes a severe challenge in developing scalable, versatile hybrid systems for useful applications. Here, we report an on-chip microwave photon–magnon hybrid system where the dissipation rates and the coupling cooperativity can be electrically influenced by the spin Hall effect. Through magnon–photon coupling, the linewidths of the resonator photon mode and the hybridized magnon polariton modes are effectively changed by the spin injection into the magnetic wires from an applied direct current, which exhibit different trends in samples with low and high coupling strengths. Moreover, the linewidth modification by the spin Hall effect shows strong dependence on the detuning of the two subsystems, in contrast to the classical behavior of a standalone magnonic device. Our results point to a direction of realizing tunable, on-chip, scalable magnon-based hybrid dynamic systems, where spintronic effects provide useful control mechanisms. 
    more » « less
  4. Abstract Spin waves, collective dynamic magnetic excitations, offer crucial insights into magnetic material properties. Rare‐earth iron garnets offer an ideal spin‐wave (SW) platform with long propagation length, short wavelength, gigahertz frequency, and applicability to magnon spintronic platforms. Of particular interest, thulium iron garnet (TmIG) has attracted huge interest recently due to its successful growth down to a few nanometers, observed topological Hall effect, and spin‐orbit torque‐induced switching effects. However, there is no direct spatial measurement of its SW properties. This work uses diamond nitrogen‐vacancy (NV) magnetometry in combination with SW electrical transmission spectroscopy to study SW transport properties in TmIG thin films. NV magnetometry allows probing spin waves at the sub‐micrometer scale, seen by the amplification of the local microwave magnetic field due to the coupling of NV spin qubits with the stray magnetic field produced by the microwave‐excited spin waves. By monitoring the NV spin resonances, the SW properties in TmIG thin films are measured as a function of the applied magnetic field, including their amplitude, decay length (≈50 µm), and wavelength (0.8–2 µm). These results pave the way for studying spin qubit‐magnon interactions in rare‐earth magnetic insulators, relevant to quantum magnonics applications. 
    more » « less
  5. Abstract The emergence of hybrid metal halides (HMH) materials, such as the archetypal CH3NH3PbBr3, provides an appealing material platform for solution-processed spintronic applications due to properties such as unprecedented large Rashba spin-splitting states and highly efficient spin-to-charge (StC) conversion efficiencies. Here we report the first study of StC conversion and spin relaxation time in MAPbBr3single crystals at room temperature using a spin pumping approach. Microwave frequency and power dependence of StC responses are both consistent with the spin pumping model, from which an inverse Rashba–Edelstein effect coherence length of up to ∼30 picometer is obtained, highlighting a good StC conversion efficiency. The magnetic field angular dependence of StC is investigated and can be well-explained by the spin precession model under oblique magnetic field. A long spin relaxation time of up to ∼190 picoseconds is obtained, which can be attributed to the surface Rashba state formed at the MAPbBr3interface. Our oblique Hanle effect by FMR-driven spin pumping technique provides a reliable and sensitive tool for measuring the spin relaxation time in various solution processed HMH single crystals. 
    more » « less