Brownian thermal noise as a result of mechanical loss in optical coatings will become the dominant source of noise at the most sensitive frequencies of ground-based gravitational-wave detectors. Experiments found, however, that a candidate material, amorphous Ta2O5, is unable to form an ultrastable glass and, consequently, to yield a film with significantly reduced mechanical loss through elevated-temperature deposition alone. X-ray scattering PDF measurements are carried out on films deposited and subsequently annealed at various temperatures. Inverse atomic modeling is used to analyze the short and medium range features in the atomic structure of these films. Furthermore, in silico deposition simulations of Ta2O5 are carried out at various substrate temperatures and an atomic level analysis of the growth at high temperatures is presented. It is observed that upon elevated-temperature deposition, short range features remain identical, whereas medium range order increases. After annealing, however, both the short and medium range orders of films deposited at different substrate temperatures are nearly identical. A discussion on the surface diffusion and glass transition temperatures indicates that future pursuits of ultrastable low-mechanical-loss films through elevated temperature deposition should focus on materials with a high surface mobility, and/or lower glass transition temperatures in the range of achievable deposition temperatueres.
more »
« less
Glass transition temperatures of binary oxides from ab initio simulations
The glass transition temperatures of common binary oxides, including those with low glass-forming ability, are estimated using pair distribution functions (PDFs) from ab initio molecular dynamics simulations. The computed glass transition temperatures for good glass-formers such as silica (SiO2), germania (GeO2), and boron oxide (B2O3) are in agreement with measured values. These calculations are then used to compute the glass transition temperatures of alumina (Al2O3), tantala (Ta2O5), and telluria (TeO2), which are known to exhibit low glass-forming ability. For Al2O3 and Ta2O5, we also compute the simulated caloric curve from molecular dynamics simulations using two-body empirical force fields. Finally, we discuss the possibility of extracting the glass transition temperature by measuring the thermal broadening of the PDFs from scattering measurements.
more »
« less
- PAR ID:
- 10594927
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 11
- Issue:
- 8
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We perform path integral molecular dynamics (PIMD) simulations of a monatomic liquid that exhibits a liquid–liquid phase transition and liquid–liquid critical point. PIMD simulations are performed using different values of Planck’s constant h, allowing us to study the behavior of the liquid as nuclear quantum effects (NQE, i.e., atoms delocalization) are introduced, from the classical liquid ( h = 0) to increasingly quantum liquids ( h > 0). By combining the PIMD simulations with the ring-polymer molecular dynamics method, we also explore the dynamics of the classical and quantum liquids. We find that (i) the glass transition temperature of the low-density liquid (LDL) is anomalous, i.e., [Formula: see text] decreases upon compression. Instead, (ii) the glass transition temperature of the high-density liquid (HDL) is normal, i.e., [Formula: see text] increases upon compression. (iii) NQE shift both [Formula: see text] and [Formula: see text] toward lower temperatures, but NQE are more pronounced on HDL. We also study the glass behavior of the ring-polymer systems associated with the quantum liquids studied (via the path-integral formulation of statistical mechanics). There are two glass states in all the systems studied, low-density amorphous ice (LDA) and high-density amorphous ice (HDA), which are the glass counterparts of LDL and HDL. In all cases, the pressure-induced LDA–HDA transformation is sharp, reminiscent of a first-order phase transition. In the low-quantum regime, the LDA–HDA transformation is reversible, with identical LDA forms before compression and after decompression. However, in the high-quantum regime, the atoms become more delocalized in the final LDA than in the initial LDA, raising questions on the reversibility of the LDA–HDA transformation.more » « less
-
The results of a combined experimental and computational investigation of the structural evolution of Au 81 Si 19 , Pd 82 Si 18 , and Pd 77 Cu 6 Si 17 metallic glass forming liquids are presented. Electrostatically levitated metallic liquids are prepared, and synchrotron x-ray scattering studies are combined with embedded atom method molecular dynamics simulations to probe the distribution of relevant structural units. Metal–metalloid based metallic glass forming systems are an extremely important class of materials with varied glass forming ability and mechanical processibility. High quality experimental x-ray scattering data are in poor agreement with the data from the molecular dynamics simulations, demonstrating the need for improved interatomic potentials. The first peak in the x-ray static structure factor in Pd 77 Cu 6 Si 17 displays evidence for a Curie–Weiss type behavior but also a peak in the effective Curie temperature. A proposed order parameter distinguishing glass forming ability, [Formula: see text], shows a peak in the effective Curie temperature near a crossover temperature established by the behavior of the viscosity, T A .more » « less
-
Glass transitions from liquid to semi-solid and solid phase states have important implications for reactivity, growth, and cloud-forming (cloud condensation nuclei and ice nucleation) capabilities of secondary organic aerosols (SOAs). The small size and relatively low mass concentration of SOAs in the atmosphere make it difficult to measure atmospheric SOA glass transitions using conventional methods. To circumvent these difficulties, we have adapted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols. Aerosol particles to be studied are deposited in the form of a thin film onto an interdigitated electrode (IDE) using electrostatic precipitation. Dielectric spectroscopy provides dipole relaxation rates for organic aerosols as a function of temperature (373 to 233 K) that are used to calculate the glass transition temperatures for several cooling or heating rates. IDE-enabled broadband dielectric spectroscopy (BDS) was successfully used to measure the kinetically controlled glass transition temperatures of aerosols consisting of glycerol and four other compounds with selected cooling and heating rates. The glass transition results agree well with available literature data for these five compounds. The results indicate that the IDE-BDS method can provide accurate glass transition data for organic aerosols under atmospheric conditions. The BDS data obtained with the IDE-BDS technique can be used to characterize glass transitions for both simulated and ambient organic aerosols and to model their climate effects.more » « less
-
Glass-forming liquids exhibit long-lived, spatially correlated dynamical heterogeneity, in which some nm-scale regions in the fluid relax more slowly than others. In the nanoscale vicinity of an interface, glass-formers also exhibit the emergence of massive interfacial gradients in glass transition temperature Tg and relaxation time τ. Both of these forms of heterogeneity have a major impact on material properties. Nevertheless, their interplay has remained poorly understood. Here, we employ molecular dynamics simulations of polymer thin films in the isoconfigurational ensemble in order to probe how bulk dynamic heterogeneity alters and is altered by the large gradient in dynamics at the surface of a glass-forming liquid. Results indicate that the τ spectrum at the surface is broader than in the bulk despite being shifted to shorter times, and yet it is less spatially correlated. This is distinct from the bulk, where the τ distribution becomes broader and more spatially organized as the mean τ increases. We also find that surface gradients in slow dynamics extend further into the film than those in fast dynamics—a result with implications for how distinct properties are perturbed near an interface. None of these features track locally with changes in the heterogeneity of caging scale, emphasizing the local disconnect between these quantities near interfaces. These results are at odds with conceptions of the surface as reflecting simply a higher “rheological temperature” than the bulk, instead pointing to a complex interplay between bulk dynamic heterogeneity and spatially organized dynamical gradients at interfaces in glass-forming liquids.more » « less