skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhancement of 2D topological semimetal transport properties by current annealing
Observation of intrinsic quantum transport properties of two-dimensional (2D) topological semimetals can be challenging due to suppression of high mobility caused by extrinsic factors introduced during fabrication. We demonstrate current annealing as a method to substantially improve electronic transport properties of 2D topological semimetal flakes. Contact resistance and resistivity were improved by factors up to 2×106 and 2×104, respectively, in devices based on exfoliated flakes of two topological semimetals, ZrSiSe and BaMnSb2. Using this method, carrier mobility in ZrSiSe was improved by a factor of 3800, resulting in observation of record-high mobility for exfoliated ZrSiSe. Quantum oscillations in annealed ZrSiSe appeared at magnetic fields as low as 5 T, and magnetoresistance increased by a factor of 104. We argue that a thermal process underlies this improvement. Finally, Raman spectroscopy and analysis of quantum oscillations in ZrSiSe indicate that the phonon modes and Fermi surface area are unchanged by current annealing.  more » « less
Award ID(s):
1848281
PAR ID:
10594997
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Applied Physics Letters
Volume:
121
Issue:
11
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recently, 2D electron gases have been observed in atomically thin semiconducting crystals, enabling the observation of rich physical phenomena at the quantum level within the ultimate thickness limit. However, the observation of 2D electron gases and subsequent quantum Hall effect require exceptionally high crystalline quality, rendering mechanical exfoliation as the only method to produce high‐quality 2D semiconductors of black phosphorus and indium selenide (InSe), which hinder large‐scale device applications. Here, the controlled one‐step synthesis of high‐quality 2D InSe thin films via chemical vapor transport method is reported. The carrier Hall mobility of hexagonal boron nitride (hBN) encapsulated InSe flakes can be up to 5000 cm2V−1s−1at 1.5 K, enabling to observe the quantum Hall effect in a synthesized van der Waals semiconductor. The existence of the quantum Hall effect in directly synthesized 2D semiconductors indicates a high quality of the chemically synthesized 2D semiconductors, which hold promise in quantum devices and applications with high mobility. 
    more » « less
  2. Three-dimensional (3D) topological semimetals represent a new class of topological matters. The study of this family of materials has been at the frontiers of condensed matter physics, and many breakthroughs have been made. Several topological semimetal phases, including Dirac semimetals (DSMs), Weyl semimetals (WSMs), nodal-line semimetals (NLSMs), and triple-point semimetals, have been theoretically predicted and experimentally demonstrated. The low-energy excitation around the Dirac/Weyl nodal points, nodal line, or triply degenerated nodal point can be viewed as emergent relativistic fermions. Experimental studies have shown that relativistic fermions can result in a rich variety of exotic transport properties, e.g., extremely large magnetoresistance, the chiral anomaly, and the intrinsic anomalous Hall effect. In this review, we first briefly introduce band structural characteristics of each topological semimetal phase, then review the current studies on quantum oscillations and exotic transport properties of various topological semimetals, and finally provide a perspective of this area. 
    more » « less
  3. Abstract Van der Waals (vdW) material Fe 5 GeTe 2 , with its long-range ferromagnetic ordering near room temperature, has significant potential to become an enabling platform for implementing novel spintronic and quantum devices. To pave the way for applications, it is crucial to determine the magnetic properties when the thickness of Fe 5 GeTe 2 reaches the few-layers regime. However, this is highly challenging due to the need for a characterization technique that is local, highly sensitive, artifact-free, and operational with minimal fabrication. Prior studies have indicated that Curie temperature T C can reach up to close to room temperature for exfoliated Fe 5 GeTe 2 flakes, as measured via electrical transport; there is a need to validate these results with a measurement that reveals magnetism more directly. In this work, we investigate the magnetic properties of exfoliated thin flakes of vdW magnet Fe 5 GeTe 2 via quantum magnetic imaging technique based on nitrogen vacancy centers in diamond. Through imaging the stray fields, we confirm room-temperature magnetic order in Fe 5 GeTe 2 thin flakes with thickness down to 7 units cell. The stray field patterns and their response to magnetizing fields with different polarities is consistent with previously reported perpendicular easy-axis anisotropy. Furthermore, we perform imaging at different temperatures and determine the Curie temperature of the flakes at ≈300 K. These results provide the basis for realizing a room-temperature monolayer ferromagnet with Fe 5 GeTe 2 . This work also demonstrates that the imaging technique enables rapid screening of multiple flakes simultaneously as well as time-resolved imaging for monitoring time-dependent magnetic behaviors, thereby paving the way towards high throughput characterization of potential two-dimensional (2D) magnets near room temperature and providing critical insights into the evolution of domain behaviors in 2D magnets due to degradation. 
    more » « less
  4. Abstract Topological insulators and semimetals have been shown to possess intriguing thermoelectric properties promising for energy harvesting and cooling applications. However, thermoelectric transport associated with the Fermi arc topological surface states on topological Dirac semimetals remains less explored. This work systematically examines thermoelectric transport in a series of topological Dirac semimetal Cd3As2thin films grown by molecular beam epitaxy. Surprisingly, significantly enhanced Seebeck effect and anomalous Nernst effect are found at cryogenic temperatures when the Cd3As2layer is thin. In particular, a peak Seebeck coefficient of nearly 500 µV K−1and a corresponding thermoelectric power factor over 30 mW K−2 m−1are observed at 5 K in a 25‐nm‐thick sample. Combining angle‐dependent quantum oscillation analysis, magnetothermoelectric measurement, transport modeling, and first‐principles simulation, the contributions from bulk and surface conducting channels are isolated and the unusual thermoelectric properties are attributed to the topological surface states. The analysis showcases the rich thermoelectric transport physics in quantum‐confined topological Dirac semimetal thin films and suggests new routes to achieving high thermoelectric performance at cryogenic temperatures. 
    more » « less
  5. The growth of novel van der Waals 2D compounds is a key ingredient in discovering new phenomena in quantum materials, optoelectronics, and energy conversion. Here, we report SnP2Se6, which is a van der Waals chiral (R3 space group) semiconductor with an indirect bandgap of 1.36–1.41 eV. Mechanically exfoliated SnP2Se6 flakes are integrated into high-performance field-effect transistors with electron mobility >100 cm2/Vs and an on/off ratio >106 at room temperature. The combination of high carrier mobility and polar symmetry of SnP2Se6 results in a high short-circuit photocurrent density exceeding 300 A/cm2 upon 532 nm wavelength irradiation at an intensity of 40 W/cm2. The biased SnP2Se6 phototransistors show high gain (>4 × 10^4) and fast photoresponse (< 4 μs). These superlative properties of SnP2Se6 present diverse opportunities for emerging optoelectronic and quantum technologies. 
    more » « less