A seemingly simple oxide with a rutile structure, RuO2, has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthesis of RuO2 films, but unfortunately, utilizing atomically controlled deposition techniques, such as molecular beam epitaxy (MBE), has been difficult due to the ultra-low vapor pressure and low oxidation potential of Ru. Here, we demonstrate the growth of epitaxial, single crystalline RuO2 films on different substrate orientations using the novel solid-source metal–organic (MO) MBE. This approach circumvents these issues by supplying Ru using a “pre-oxidized” solid MO precursor containing Ru. High-quality epitaxial RuO2 films with a bulk-like room-temperature resistivity of 55 μΩ cm were obtained at a substrate temperature as low as 300 °C. By combining x-ray diffraction, transmission electron microscopy, and electrical measurements, we discuss the effect of substrate temperature, orientation, film thickness, and strain on the structure and electrical properties of these films. Our results illustrating the use of a novel solid-source metal–organic MBE approach pave the way to the atomic-layer controlled synthesis of complex oxides of “stubborn” metals, which are not only difficult to evaporate but also hard to oxidize.
more »
« less
Growing clean crystals from dirty precursors: Solid-source metal-organic molecular beam epitaxy growth of superconducting Sr2RuO4 films
Ultra-high purity elemental sources have long been considered a prerequisite for obtaining low impurity concentrations in compound semiconductors in the world of molecular beam epitaxy (MBE) since its inception in 1968. However, we demonstrate that a “dirty” solid precursor, ruthenium(III) acetylacetonate [also known as Ru(acac)3], can yield single-phase, epitaxial, and superconducting Sr2RuO4 films with the same ease and control as III–V MBE. A superconducting transition was observed at ∼0.9 K, suggesting a low defect density and a high degree of crystallinity in these films. In contrast to the conventional MBE, which employs the ultra-pure Ru metal evaporated at ∼2000 °C as a Ru source, along with reactive ozone to obtain Ru → Ru4+ oxidation, the use of the Ru(acac)3 precursor significantly simplifies the MBE process by lowering the temperature for Ru sublimation (less than 200 °C) and by eliminating the need for ozone. Combining these results with the recent developments in hybrid MBE, we argue that leveraging the precursor chemistry will be necessary to realize next-generation breakthroughs in the synthesis of atomically precise quantum materials.
more »
« less
- Award ID(s):
- 2011401
- PAR ID:
- 10595075
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 11
- Issue:
- 6
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Noble‐metal nanoboxes offer an attractive form of nanomaterials for catalytic applications owing to their open structure and highly efficient use of atoms. Herein, we report the facile synthesis of Ag−Ru core−shell nanocubes and then Ru nanoboxes with a hexagonal close‐packed(hcp) structure, as well as evaluation of their catalytic activity toward a model hydrogenation reaction. By adding a solution of Ru(acac)3in ethylene glycol (EG) dropwise to a suspension of silver nanocubes in EG at 170 °C, Ru atoms are generated and deposited onto the entire surface of a nanocube. As the volume of the RuIIIprecursor is increased, Ru atoms are also produced through a galvanic replacement reaction, generating Ag−Ru nanocubes with a hollow interior. The released Ag+ions are then reduced by EG and deposited back onto the nanocubes. By selectively etching away the remaining Ag with aqueous HNO3, the as‐obtained Ag−Ru nanocubes are transformed into Ru nanoboxes, whose walls are characterized by anhcpstructure and an ultrathin thickness of a few nanometers. Finally, we evaluated the catalytic properties of the Ru nanoboxes with two different wall thicknesses by using a model hydrogenation reaction; both samples showed excellent performance.more » « less
-
Ruthenium (Ru) is a promising candidate for next-generation electronic interconnects due to its low resistivity, small mean free path, and superior electromigration reliability at nanometer scales. In addition, Ru exhibits superconductivity below 1 K, with resistance to oxidation, low diffusivity, and a small superconducting gap, making it a potential material for superconducting qubits and Josephson Junctions. Here, we investigate the superconducting behavior of Ru thin films (11.9–108.5 nm thick), observing transition temperatures from 657.9 to 557 mK. A weak thickness dependence appears in the thinnest films, followed by a conventional inverse thickness dependence in thicker films. Magnetotransport studies reveal type-II superconductivity in the dirty limit (ξ ≫ l), with coherence lengths ranging from 13.5 to 27 nm. Finally, oxidation resistance studies confirm minimal RuOx growth after seven weeks of air exposure. These findings provide key insights for integrating Ru into superconducting electronic devices.more » « less
-
Abstract This article reports a facile method for the synthesis of Pd‐Ru nanocages by activating the galvanic replacement reaction between Pd nanocrystals and a Ru(III) precursor with I‐ions. The as‐synthesized nanocages feature a hollow interior, ultrathin wall of ≈2.5 nm in thickness, and a cubic shape. Our quantitative study suggests that the reduction rate of the Ru(III) precursor can be substantially accelerated upon the introduction of I‐ions and then retarded as the ratio of I‐/Ru3+is increased. The Pd‐Ru nanocages take an alloy structure, with the Ru atoms in the nanocages crystallized in a face‐centered cubic structure instead of the hexagonal close‐packed phase taken by bulk Ru. Using Pd nanocubes with different edge lengths, the dimensions of the nanocages in the range of 6−18 nm can readily be tuned. When tested as catalysts toward the electro‐oxidation of ethylene glycol and glycerol, respectively, the Pd‐Ru cubic nanocages prepared from 18 nm Pd cubes exhibit 5.1‐ and 6.2‐fold enhancements in terms of mass activity relative to the commercial Pd/C. After 1000 cycles of accelerated durability test, the mass activities of the nanocages are still 3.3 and 3.7 times as high as that of the pristine commercial Pd/C catalyst, respectively.more » « less
-
This work demonstrates the advantage of carrying out silicon ion (Si+) implantation at high temperatures for forming controlled heavily doped regions in gallium oxide. Room temperature (RT, 25 °C) and high temperature (HT, 600 °C) Si implants were carried out into MBE grown (010) β-Ga2O3 films to form ∼350 nm deep Si-doped layers with average concentrations up to ∼1.2 × 1020 cm−3. For such high concentrations, the RT sample was too resistive for measurement, but the HT samples had 82.1% Si dopant activation efficiency with a high sheet electron concentration of 3.3 × 1015 cm−2 and an excellent mobility of 92.8 cm2/V·s at room temperature. X-ray diffraction measurements indicate that HT implantation prevents the formation of other Ga2O3 phases and results in reduced structural defects and lattice damage. These results are highly encouraging for achieving ultra-low resistance heavily doped Ga2O3 layers using ion implantation.more » « less
An official website of the United States government
