The success of artificial neural networks (ANNs) in machine vision techniques has driven hardware researchers to explore more efficient computing elements for energy-expensive operations such as vector-matrix multiplication (VMM). In this work, InP-based floating-gate photo-field-effective transistors (FG-PFETs) are demonstrated as computing elements that integrate both photodetection and initial signal processing at the sensor level. These devices are fabricated from semiconductor channels grown via a back-end CMOS compatible templated liquid phase (TLP) approach. Individual devices are shown to exhibit programmable responsivity, mimicking the effect of a synapse connecting the photodetector to a neuron. Using these devices, a simulated optical neural network (ONN) where the experimentally measured performance of FG-PFETs is used as an input shows excellent image recognition accuracy for color-mixed handwritten digits.
more »
« less
(Bi0.2Sb0.8)2Te3 based dynamic synapses with programmable spatio-temporal dynamics
Neuromorphic computing has recently emerged as a promising paradigm to overcome the von-Neumann bottleneck and enable orders of magnitude improvement in bandwidth and energy efficiency. However, existing complementary metal-oxide-semiconductor (CMOS) digital devices, the building block of our computing system, are fundamentally different from the analog synapses, the building block of the biological neural network—rendering the hardware implementation of the artificial neural networks (ANNs) not scalable in terms of area and power, with existing CMOS devices. In addition, the spatiotemporal dynamic, a crucial component for cognitive functions in the neural network, has been difficult to replicate with CMOS devices. Here, we present the first topological insulator (TI) based electrochemical synapse with programmable spatiotemporal dynamics, where long-term and short-term plasticity in the TI synapse are achieved through the charge transfer doping and ionic gating effects, respectively. We also demonstrate basic neuronal functions such as potentiation/depression and paired-pulse facilitation with high precision (>500 states per device), as well as a linear and symmetric weight update. We envision that the dynamic TI synapse, which shows promising scaling potential in terms of energy and speed, can lead to the hardware acceleration of truly neurorealistic ANNs with superior cognitive capabilities and excellent energy efficiency.
more »
« less
- PAR ID:
- 10595168
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- APL Materials
- Volume:
- 7
- Issue:
- 10
- ISSN:
- 2166-532X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Resistive switching is a promising technology for artificial synapses, the most critical component and building block of a neural network for brain-inspired neuromorphic computing. The artificial synapse is capable of emulating a signal process and memory functions of biological synapses. The artificial synapse fabricated by natural bioorganic materials is essential for developing soft, flexible, and biocompatible electronics and sustainable, biodegradable, and environmentally friendly neuromorphic systems. In this work, a natural biomaterial—honey based resistive switching device—was demonstrated to emulate some important functionalities of biological synapses, including synaptic potentiation and depression, short-term and long-term memory, spatial summation, and shunting inhibition. The results indicate the potential of honey based resistive switching for artificial synaptic devices in renewable neuromorphic systems and bioelectronics.more » « less
-
Neuromorphic computing has the great potential to enable faster and more energy‐efficient computing by overcoming the von Neumann bottleneck. However, most emerging nonvolatile memory (NVM)‐based artificial synapses suffer from insufficient precision, nonlinear synaptic weight update, high write voltage, and high switching latency. Moreover, the spatiotemporal dynamics, an important temporal component for cognitive computing in spiking neural networks (SNNs), are hard to generate with existing complementary metal–oxide–semiconductor (CMOS) devices or emerging NVM. Herein, a three‐terminal, LixWO3‐based electrochemical synapse (LiWES) is developed with low programming voltage (0.2 V), fast programming speed (500 ns), and high precision (1024 states) that is ideal for artificial neural networks applications. Time‐dependent synaptic functions such as paired‐pulse facilitation (PPF) and temporal filtering that are critical for SNNs are also demonstrated. In addition, by leveraging the spike‐encoded timing information extracted from the short‐term plasticity (STP) behavior in the LiWES, an SNNs model is built to benchmark the pattern classification performance of the LiWES, and the result indicates a large boost in classification performance (up to 128×), compared with those NO‐STP synapses.more » « less
-
Artificial Neural Networks (ANNs) play a key role in many machine learning (ML) applications but poses arduous challenges in terms of storage and computation of network parameters. Memristive crossbar arrays (MCAs) are capable of both computation and storage, making them promising for in-memory computing enabled neural network accelerators. At the same time, the presence of a significant amount of zero weights in ANNs has motivated research in a variety of parameter reduction techniques. However, for crossbar based architectures, the study of efficient methods to take advantage of network sparsity is still in the early stage. This paper presents CSrram, an efficient ex-situ training framework for hybrid CMOS-memristive neuromorphic circuits. CSrram includes a pre-defined block diagonal clustered (BDC) sparsity algorithm to significantly reduce area and power consumption. The proposed framework is verified on a wide range of datasets including MNIST handwritten recognition, fashion MNIST, breast cancer prediction (BCW), IRIS, and mobile health monitoring. Compared to state of the art fully connected memristive neuromorphic circuits, our CSrram with only 25% density of weights in the first junction, provides a power and area efficiency of 1.5x and 2.6x (averaged over five datasets), respectively, without any significant test accuracy loss.more » « less
-
Abstract Neuromorphic computing mimics the organizational principles of the brain in its quest to replicate the brain’s intellectual abilities. An impressive ability of the brain is its adaptive intelligence, which allows the brain to regulate its functions “on the fly” to cope with myriad and ever-changing situations. In particular, the brain displays three adaptive and advanced intelligence abilities of context-awareness, cross frequency coupling, and feature binding. To mimic these adaptive cognitive abilities, we design and simulate a novel, hardware-based adaptive oscillatory neuron using a lattice of magnetic skyrmions. Charge current fed to the neuron reconfigures the skyrmion lattice, thereby modulating the neuron’s state, its dynamics and its transfer function “on the fly.” This adaptive neuron is used to demonstrate the three cognitive abilities, of which context-awareness and cross-frequency coupling have not been previously realized in hardware neurons. Additionally, the neuron is used to construct an adaptive artificial neural network (ANN) and perform context-aware diagnosis of breast cancer. Simulations show that the adaptive ANN diagnoses cancer with higher accuracy while learning faster and using a more compact and energy-efficient network than a nonadaptive ANN. The work further describes how hardware-based adaptive neurons can mitigate several critical challenges facing contemporary ANNs. Modern ANNs require large amounts of training data, energy, and chip area, and are highly task-specific; conversely, hardware-based ANNs built with adaptive neurons show faster learning, compact architectures, energy-efficiency, fault-tolerance, and can lead to the realization of broader artificial intelligence.more » « less
An official website of the United States government
