Hydrogen tunneling plays a critical role in many biologically and chemically important processes. The nuclear–electronic orbital multistate density functional theory (NEO-MSDFT) method was developed to describe hydrogen transfer systems. In this approach, the transferring proton is treated quantum mechanically on the same level as the electrons within multicomponent DFT, and a nonorthogonal configuration interaction scheme is used to produce delocalized vibronic states from localized vibronic states. The NEO-MSDFT method has been shown to provide accurate hydrogen tunneling splittings for fixed molecular systems. Herein, the NEO-MSDFT analytical gradients for both ground and excited vibronic states are derived and implemented. The analytical gradients and semi-numerical Hessians are used to optimize and characterize equilibrium and transition state geometries and to generate minimum energy paths (MEPs), for proton transfer in the deprotonated acetylene dimer and malonaldehyde. The barriers along the resulting MEPs are lower when the transferring proton is quantized because the NEO-MSDFT method inherently includes the zero-point energy of the transferring proton. Analysis of the proton densities along the MEPs illustrates that the proton density can exhibit symmetric or asymmetric bilobal character associated with symmetric or slightly asymmetric double-well potential energy surfaces and hydrogen tunneling. Analysis of the contributions to the intrinsic reaction coordinate reveals that changes in the C–O bond lengths drive proton transfer in malonaldehyde. This work provides the foundation for future reaction path studies and direct nonadiabatic dynamics simulations of a wide range of hydrogen transfer reactions.
more »
« less
This content will become publicly available on March 14, 2026
Numerically stable resonating Hartree–Fock
The simulation of excited states at low computational cost remains an open challenge for electronic structure (ES) methods. While much attention has been given to orthogonal ES methods, relatively little work has been done to develop nonorthogonal ES methods for excited states, particularly those involving nonorthogonal orbital optimization. We present here a numerically stable formulation of the Resonating Hartree–Fock (ResHF) method that uses the matrix adjugate to remove numerical instabilities arising from nearly orthogonal orbitals, and as a result, we demonstrate improvements to ResHF wavefunction optimization. We then benchmark the performance of ResHF against complete active space self-consistent field in the avoided crossing of LiF, the torsional rotation of ethene, and the singlet–triplet energy gaps of a selection of small molecules. ResHF is a promising excited state method because it incorporates the orbital relaxation of state-specific methods, while retaining the correct state crossings of state-averaged approaches. Our open-source ResHF implementation, yucca, is available on GitLab.
more »
« less
- Award ID(s):
- 2236959
- PAR ID:
- 10595267
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 162
- Issue:
- 10
- ISSN:
- 0021-9606
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Variational Monte Carlo methods have recently been applied to the calculation of excited states; however, it is still an open question what objective function is most effective. A promising approach is to optimize excited states using a penalty to minimize overlap with lower eigenstates, which has the drawback that states must be computed one at a time. We derive a general framework for constructing objective functions with minima at the the lowestNeigenstates of a many-body Hamiltonian. The objective function uses a weighted average of the energies and an overlap penalty, which must satisfy several conditions. We show this objective function has a minimum at the exact eigenstates for a finite penalty, and provide a few strategies to minimize the objective function. The method is demonstrated usingab initiovariational Monte Carlo to calculate the degenerate first excited state of a CO molecule.more » « less
-
Finding the inherent organization in the structure space of a protein molecule is central in many computational studies of proteins. Grouping or clustering tertiary structures of a protein has been leveraged to build representations of the structure-energy landscape, highlight sta- ble and semi-stable structural states, support models of structural dy- namics, and connect them to biological function. Over the years, our laboratory has introduced methods to reveal structural states and build models of state-to-state protein dynamics. These methods have also been shown competitive for an orthogonal problem known as model selection, where model refers to a computed tertiary structure. Building on this work, in this paper we present a novel, tensor factorization-based method that doubles as a non-parametric clustering method. While the method has broad applicability, here we focus and demonstrate its efficacy on the estimation of model accuracy (EMA) problem. The method outperforms state-of-the-art methods, including single-model methods that leverage deep neural networks and domain-specific insight.more » « less
-
Photocatalysis using complexes of d0 metals with ligand-to-metal charge-transfer (LMCT) excited states is an active area of research. Because titanium is the second most abundant transition metal in the earth’s crust, d0 complexes of TiIV are an appropriate target for this research. Recently, our group has demonstrated that the arylethynyltitanocene Cp2Ti(C2Ph)2CuBr is not emissive in room-temperature fluid solution, whereas the corresponding Cp* complex, Cp*2Ti(C2Ph)2CuBr, is emissive. The Cp* ligand is hypothesized to provide steric constraint that inhibits excited-state structural rearrangement. However, modifying the structure also changes the orbital character of the excited state. To investigate the impact of the excited-state orbital character on the photophysics, herein we characterize complexes similar to Cp*2Ti(C2Ph)2CuBr—but one with a more electron-rich arylethynyl ligand, ethynyldimethylaniline (C2DMA), and one with a more electron-poor arylethynyl ligand, ethynyl-α,α,α-trifluorotoluene. We have also prepared complexes with the C2DMA ligand but with different Cp ligands that adjust the steric bulk and constraint around the Ti, by replacing the Cp* ligands with either indenyl ligands or an ansa-cyclopentadienyl ligand where the two Cp ligands are bridged by a dimethylsilylene. All four target complexes have been characterized crystallographically and structure activity relationships are highlighted.more » « less
-
Abstract The ability to generate and control strong long-range interactions via highly excited electronic states has been the foundation for recent breakthroughs in a host of areas, from atomic and molecular physics to quantum optics and technology. Rydberg excitons provide a promising solid-state realization of such highly excited states, for which record-breaking orbital sizes of up to a micrometer have indeed been observed in cuprous oxide semiconductors. Here, we demonstrate the generation and control of strong exciton interactions in this material by optically producing two distinct quantum states of Rydberg excitons. This is made possible by two-color pump-probe experiments that allow for a detailed probing of the interactions. Our experiments reveal the emergence of strong spatial correlations and an inter-state Rydberg blockade that extends over remarkably large distances of several micrometers. The generated many-body states of semiconductor excitons exhibit universal properties that only depend on the shape of the interaction potential and yield clear evidence for its vastly extended-range and power-law character.more » « less
An official website of the United States government
