skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Initial Task Allocation in Multi-Human Multi-Robot Teams: An Attention-Enhanced Hierarchical Reinforcement Learning Approach
Multi-human multi-robot teams (MH-MR) obtain tremendous potential in tackling intricate and massive missions by merging distinct strengths and expertise of individual members. The inherent heterogeneity of these teams necessitates advanced initial task allocation (ITA) methods that align tasks with the intrinsic capabilities of team members from the outset. While existing reinforcement learning approaches show encouraging results, they might fall short in addressing the nuances of long-horizon ITA problems, particularly in settings with large-scale MH-MR teams or multifaceted tasks. To bridge this gap, we propose an attention-enhanced hierarchical reinforcement learning approach that decomposes the complex ITA problem into structured sub-problems, facilitating more efficient allocations. To bolster sub-policy learning, we introduce a hierarchical cross-attribute attention (HCA) mechanism, encouraging each sub-policy within the hierarchy to discern and leverage the specific nuances in the state space that are crucial for its respective decision-making phase. Through an extensive environmental surveillance case study, we demonstrate the benefits of our model and the HCA inside.  more » « less
Award ID(s):
1846221
PAR ID:
10595349
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Robotics and Automation Letters
Volume:
9
Issue:
4
ISSN:
2377-3774
Page Range / eLocation ID:
3451 to 3458
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Successful collaboration requires team members to stay aligned, especially in complex sequential tasks. Team members must dynamically coordinate which subtasks to perform and in what order. However, real-world constraints like partial observability and limited communication bandwidth often lead to suboptimal collaboration. Even among expert teams, the same task can be executed in multiple ways. To develop multi-agent systems and human-AI teams for such tasks, we are interested in data-driven learning of multimodal team behaviors. Multi-Agent Imitation Learning (MAIL) provides a promising framework for data-driven learning of team behavior from demonstrations, but existing methods struggle with heterogeneous demonstrations, as they assume that all demonstrations originate from a single team policy. Hence, in this work, we introduce DTIL: a hierarchical MAIL algorithm designed to learn multimodal team behaviors in complex sequential tasks. DTIL represents each team member with a hierarchical policy and learns these policies from heterogeneous team demonstrations in a factored manner. By employing a distribution-matching approach, DTIL mitigates compounding errors and scales effectively to long horizons and continuous state representations. Experimental results show that DTIL outperforms MAIL baselines and accurately models team behavior across a variety of collaborative scenarios. 
    more » « less
  2. Scheduling in multi-channel wireless communication system presents formidable challenges in effectively allocating resources. To address these challenges, we investigate a multi-resource restless matching bandit (MR-RMB) model for heterogeneous resource systems with an objective of maximizing long-term discounted total rewards while respecting resource constraints. We have also generalized to applications beyond multi-channel wireless. We discuss the Max-Weight Index Matching algorithm, which optimizes resource allocation based on learned partial indexes. We have derived the policy gradient theorem for index learning. Our main contribution is the introduction of a new Deep Index Policy (DIP), an online learning algorithm tailored for MR-RMB. DIP learns the partial index by leveraging the policy gradient theorem for restless arms with convoluted and unknown transition kernels of heterogeneous resources. We demonstrate the utility of DIP by evaluating its performance for three different MR-RMB problems. Our simulation results show that DIP indeed learns the partial indexes efficiently. 
    more » « less
  3. Recent advances in on-policy reinforcement learning (RL) methods enabled learning agents in virtual environments to master complex tasks with high-dimensional and continuous observation and action spaces. However, leveraging this family of algorithms in multi-fingered robotic grasping remains a challenge due to large sim-to-real fidelity gaps and the high sample complexity of on-policy RL algorithms. This work aims to bridge these gaps by first reinforcement-learning a multi-fingered robotic grasping policy in simulation that operates in the pixel space of the input: a single depth image. Using a mapping from pixel space to Cartesian space according to the depth map, this method transfers to the real world with high fidelity and introduces a novel attention mechanism that substantially improves grasp success rate in cluttered environments. Finally, the direct-generative nature of this method allows learning of multi-fingered grasps that have flexible end-effector positions, orientations and rotations, as well as all degrees of freedom of the hand. 
    more » « less
  4. We present a closed-loop multi-arm motion planner that is scalable and flexible with team size. Traditional multi-arm robotic systems have relied on centralized motion planners, whose run times often scale exponentially with team size, and thus, fail to handle dynamic environments with open-loop control. In this paper, we tackle this problem with multi-agent reinforcement learning, where a shared policy network is trained to control each individual robot arm to reach its target end-effector pose given observations of its workspace state and target end-effector pose. The policy is trained using Soft Actor-Critic with expert demonstrations from a sampling-based motion planning algorithm (i.e., BiRRT). By leveraging classical planning algorithms, we can improve the learning efficiency of the reinforcement learning algorithm while retaining the fast inference time of neural networks. The resulting policy scales sub-linearly and can be deployed on multi-arm systems with variable team sizes. Thanks to the closed-loop and decentralized formulation, our approach generalizes to 5-10 multiarm systems and dynamic moving targets (>90% success rate for a 10-arm system), despite being trained on only 1-4 arm planning tasks with static targets. 
    more » « less
  5. Reinforcement learning (RL) has received widespread attention across multiple communities, but the experiments have focused primarily on large-scale game playing and robotics tasks. In this paper we introduce ORSuite, an open-source library containing environments, algorithms, and instrumentation for operational problems. Our package is designed to motivate researchers in the reinforcement learning community to develop and evaluate algorithms on operational tasks, and to consider the true multi-objective nature of these problems by considering metrics beyond cumulative reward. 
    more » « less