Abstract We consider a conjecture that identifies two types of base point free divisors on$$\overline {\text {M}}_{0,n}$$ . The first arises from Gromov-Witten theory of a Grassmannian. The second comes from first Chern classes of vector bundles associated with simple Lie algebras in type A. Here we reduce this conjecture on$$\overline {\text {M}}_{0,n}$$ to the same statement forn= 4. A reinterpretation leads to a proof of the conjecture on$$\overline {\text {M}}_{0,n}$$ for a large class, and we give sufficient conditions for the non-vanishing of these divisors. 
                        more » 
                        « less   
                    This content will become publicly available on November 1, 2025
                            
                            Supersolvable posets and fiber-type abelian arrangements
                        
                    
    
            Abstract We present a combinatorial analysis of fiber bundles of generalized configuration spaces on connected abelian Lie groups. These bundles are akin to those of Fadell–Neuwirth for configuration spaces, and their existence is detected by a combinatorial property of an associated finite partially ordered set. This is consistent with Terao’s fibration theorem connecting bundles of hyperplane arrangements to Stanley’s lattice supersolvability. We obtain a combinatorially determined class of toric and elliptic arrangements. Under a stronger combinatorial condition, we prove a factorization of the Poincaré polynomial when the Lie group is noncompact. In the case of toric arrangements, this provides an analogue of Falk–Randell’s formula relating the Poincaré polynomial to the lower central series of the fundamental group. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2204299
- PAR ID:
- 10595622
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Selecta Mathematica
- Volume:
- 30
- Issue:
- 5
- ISSN:
- 1022-1824
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Given a compact doubling metric measure spaceXthat supports a 2-Poincaré inequality, we construct a Dirichlet form on$$N^{1,2}(X)$$ that is comparable to the upper gradient energy form on$$N^{1,2}(X)$$ . Our approach is based on the approximation ofXby a family of graphs that is doubling and supports a 2-Poincaré inequality (see [20]). We construct a bilinear form on$$N^{1,2}(X)$$ using the Dirichlet form on the graph. We show that the$$\Gamma $$ -limit$$\mathcal {E}$$ of this family of bilinear forms (by taking a subsequence) exists and that$$\mathcal {E}$$ is a Dirichlet form onX. Properties of$$\mathcal {E}$$ are established. Moreover, we prove that$$\mathcal {E}$$ has the property of matching boundary values on a domain$$\Omega \subseteq X$$ . This construction makes it possible to approximate harmonic functions (with respect to the Dirichlet form$$\mathcal {E}$$ ) on a domain inXwith a prescribed Lipschitz boundary data via a numerical scheme dictated by the approximating Dirichlet forms, which are discrete objects.more » « less
- 
            Abstract The isodynamic points of a plane triangle are known to be the only pair of its centers invariant under the action of the Möbius group$${\mathcal {M}}$$ on the set of triangles, Kimberling (Encyclopedia of Triangle Centers,http://faculty.evansville.edu/ck6/encyclopedia). Generalizing this classical result, we introduce below theisodynamicmap associating to a univariate polynomial of degree$$d\ge 3$$ with at most double roots a polynomial of degree (at most)$$2d-4$$ such that this map commutes with the action of the Möbius group$${\mathcal {M}}$$ on the zero loci of the initial polynomial and its image. The roots of the image polynomial will be called theisodynamic pointsof the preimage polynomial. Our construction naturally extends from univariate polynomials to binary forms and further to their ratios.more » « less
- 
            Abstract Let us fix a primepand a homogeneous system ofmlinear equations$$a_{j,1}x_1+\dots +a_{j,k}x_k=0$$ for$$j=1,\dots ,m$$ with coefficients$$a_{j,i}\in \mathbb {F}_p$$ . Suppose that$$k\ge 3m$$ , that$$a_{j,1}+\dots +a_{j,k}=0$$ for$$j=1,\dots ,m$$ and that every$$m\times m$$ minor of the$$m\times k$$ matrix$$(a_{j,i})_{j,i}$$ is non-singular. Then we prove that for any (large)n, any subset$$A\subseteq \mathbb {F}_p^n$$ of size$$|A|> C\cdot \Gamma ^n$$ contains a solution$$(x_1,\dots ,x_k)\in A^k$$ to the given system of equations such that the vectors$$x_1,\dots ,x_k\in A$$ are all distinct. Here,Cand$$\Gamma $$ are constants only depending onp,mandksuch that$$\Gamma . The crucial point here is the condition for the vectors$$x_1,\dots ,x_k$$ in the solution$$(x_1,\dots ,x_k)\in A^k$$ to be distinct. If we relax this condition and only demand that$$x_1,\dots ,x_k$$ are not all equal, then the statement would follow easily from Tao’s slice rank polynomial method. However, handling the distinctness condition is much harder, and requires a new approach. While all previous combinatorial applications of the slice rank polynomial method have relied on the slice rank of diagonal tensors, we use a slice rank argument for a non-diagonal tensor in combination with combinatorial and probabilistic arguments.more » « less
- 
            Abstract Harmonic Hilbert spaces on locally compact abelian groups are reproducing kernel Hilbert spaces (RKHSs) of continuous functions constructed by Fourier transform of weighted$$L^2$$ spaces on the dual group. It is known that for suitably chosen subadditive weights, every such space is a Banach algebra with respect to pointwise multiplication of functions. In this paper, we study RKHSs associated with subconvolutive functions on the dual group. Sufficient conditions are established for these spaces to be symmetric Banach$$^*$$ -algebras with respect to pointwise multiplication and complex conjugation of functions (here referred to as RKHAs). In addition, we study aspects of the spectra and state spaces of RKHAs. Sufficient conditions are established for an RKHA on a compact abelian groupGto have the same spectrum as the$$C^*$$ -algebra of continuous functions onG. We also consider one-parameter families of RKHSs associated with semigroups of self-adjoint Markov operators on$$L^2(G)$$ , and show that in this setting subconvolutivity is a necessary and sufficient condition for these spaces to have RKHA structure. Finally, we establish embedding relationships between RKHAs and a class of Fourier–Wermer algebras that includes spaces of dominating mixed smoothness used in high-dimensional function approximation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
