skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Guided Policy Search for Stabilizing Contact-rich Motion Plans
Learning policies for contact-rich manipulation is a challenging problem due to the presence of multiple contact modes with different dynamics, which complicates state and action exploration. Contact-rich motion planning uses simplified dynamics to reduce the search space dimension, but the found plans are then difficult to execute under the true object-manipulator dynamics. This paper presents an algorithm for learning controllers based on guided policy search, where motion plans based on simplified dynamics define rewards and sampling distributions for policy gradient-based learning. We demonstrate that our guided policy search method improves the ability to learn manipulation controllers, through a task involving pushing a box over a step.  more » « less
Award ID(s):
2330794
PAR ID:
10595917
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
IFAC-PapersOnLine
Volume:
58
Issue:
28
ISSN:
2405-8963
Page Range / eLocation ID:
1019 to 1024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While many robotic tasks, like manipulation and locomotion, are fundamentally based in making and breaking contact with the environment, state-of-the-art control policies struggle to deal with the hybrid nature of multi-contact motion. Such controllers often rely heavily upon heuristics or, due to the combinatoric structure in the dynamics, are unsuitable for real-time control. Principled deployment of tactile sensors offers a promising mechanism for stable and robust control, but modern approaches often use this data in an ad hoc manner, for instance to guide guarded moves. In this work, by exploiting the complementarity structure of contact dynamics, we propose a control framework which can close the loop on rich, tactile sensors. Critically, this framework is non-combinatoric, enabling optimization algorithms to automatically synthesize provably stable control policies. We demonstrate this approach on three different underactuated, multi-contact robotics problems. 
    more » « less
  2. Mobile manipulation tasks such as opening a door, pulling open a drawer, or lifting a toilet lid require constrained motion of the end-effector under environmental and task constraints. This, coupled with partial information in novel environments, makes it challenging to employ classical motion planning approaches at test time. Our key insight is to cast it as a learning problem to leverage past experience of solving similar planning problems to directly predict motion plans for mobile manipulation tasks in novel situations at test time. To enable this, we develop a simulator, ArtObjSim, that simulates articulated objects placed in real scenes. We then introduce SeqIK+θ0, a fast and flexible representation for motion plans. Finally, we learn models that use SeqIK+θ0 to quickly predict motion plans for articulating novel objects at test time. Experimental evaluation shows improved speed and accuracy at generating motion plans than pure search-based methods and pure learning methods. 
    more » « less
  3. Designing stabilizing controllers is a fundamental challenge in autonomous systems, particularly for high-dimensional, nonlinear systems that can hardly be accurately modeled with differential equations. The Lyapunov theory offers a solution for stabilizing control systems, still, current methods relying on Lyapunov functions require access to complete dynamics or samples of system executions throughout the entire state space. Consequently, they are impractical for high-dimensional systems. This paper introduces a novel framework, LYapunov-Guided Exploration (LYGE), for learning stabilizing controllers tailored to high-dimensional, unknown systems. LYGE employs Lyapunov theory to iteratively guide the search for samples during exploration while simultaneously learning the local system dynamics, control policy, and Lyapunov functions. We demonstrate its scalability on highly complex systems, including a high-fidelity F-16 jet model featuring a 16D state space and a 4D input space. Experiments indicate that, compared to prior works in reinforcement learning, imitation learning, and neural certificates, LYGE reduces the distance to the goal by 50% while requiring only 5% to 32% of the samples. Furthermore, we demonstrate that our algorithm can be extended to learn controllers guided by other certificate functions for unknown systems. 
    more » « less
  4. We present a method that finds locomanipulation plans that perform simultaneous locomotion and manipulation of objects for a desired end-effector trajectory. Key to our approach is to consider an injective locomotion constraint manifold that defines the locomotion scheme of the robot and then using this constraint manifold to search for admissible manipulation trajectories. The problem is formulated as a weighted-A* graph search whose planner output is a sequence of contact transitions and a path progression trajectory to construct the whole-body kinodynamic locomanipulation plan. We also provide a method for computing, visualizing, and learning the locomanipulability region, which is used to efficiently evaluate the edge transition feasibility during the graph search. Numerical simulations are performed with the NASA Valkyrie robot platform that utilizes a dynamic locomotion approach, called the divergent-component-of-motion (DCM), on two example locomanipulation scenarios. 
    more » « less
  5. null (Ed.)
    In this paper, we present a planning and control framework for dynamic, whole-body motions for dynamically stable shape-accelerating mobile manipulators. This class of robots are inherently unstable and require careful coordination between the upper and lower body to maintain balance while performing manipulation tasks. Solutions to this problem either use a complex, full-body nonlinear dynamic model of the robot or a highly simplified model of the robot. Here we explore the use of centroidal dynamics which has recently become a popular approach for designing balancing controllers for humanoid robots. We describe a framework where we first solve a trajectory optimization problem offline. We define balancing for a ballbot in terms of the centroidal momentum instead of other approaches like ZMP or angular velocity that are more commonly used. The generated motion is tracked using a PD- PID cascading balancing controller for the body and torque controller for the arms. We demonstrate that this framework is capable of generating dynamic motion plans and control inputs with examples on the CMU ballbot, a single-spherical-wheeled balancing mobile manipulator. 
    more » « less